Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sankaranarayanan Kannan is active.

Publication


Featured researches published by Sankaranarayanan Kannan.


Free Radical Biology and Medicine | 2012

Acute exercise stress activates Nrf2/ARE signaling and promotes antioxidant mechanisms in the myocardium.

Vasanthi R. Muthusamy; Sankaranarayanan Kannan; Kamal Sadhaasivam; Sellamuthu S. Gounder; Christopher J. Davidson; Christoph Boeheme; John R. Hoidal; Li Wang; Namakkal S. Rajasekaran

Oxidative stress has been implicated in the pathogenesis of cardiovascular diseases, including myocardial hypertrophy and infarction. Although impairment of antioxidant defense mechanisms has been thought to provoke oxidative stress-induced myocardial dysfunction, it has been difficult to clearly demonstrate. Nuclear erythroid 2 p45-related factor 2 (Nrf2) is a redox-sensitive, basic leucine zipper protein that regulates the transcription of several antioxidant genes. We previously reported that sustained activation of Nrf2 upregulates transcription of a number of endogenous antioxidants in the heart. Here, we show that acute exercise stress (AES) results in activation of Nrf2/ARE (antioxidant response element) signaling and subsequent enhancement of antioxidant defense pathways in wild-type (WT) mouse hearts, while oxidative stress, along with blunted defense mechanisms, was observed in Nrf2-/- mice. We also find that AES is associated with increased trans-activation of ARE-containing genes in exercised animals when compared to age-matched sedentary WT mice. However, enhanced oxidative stress in response to AES was observed in Nrf2-/- mice due to lower basal expression and marked attenuation of the transcriptional induction of several antioxidant genes. Thus, AES induces ROS and promotes Nrf2 function, but disruption of Nrf2 increases susceptibility of the myocardium to oxidative stress. Our findings suggest the basis for a nonpharmacological approach to activate Nrf2/ARE signaling, which might be a potential therapeutic target to protect the heart from oxidative stress-induced cardiovascular complications.


PLOS ONE | 2012

Impaired Transcriptional Activity of Nrf2 in Age-Related Myocardial Oxidative Stress Is Reversible by Moderate Exercise Training

Sellamuthu S. Gounder; Sankaranarayanan Kannan; Dinesh Devadoss; Corey J. Miller; Kevin S Whitehead; Shannon J. Odelberg; Matthew A. Firpo; Robert Paine; John R. Hoidal; E. Dale Abel; Namakkal S. Rajasekaran

Aging promotes accumulation of reactive oxygen/nitrogen species (ROS/RNS) in cardiomyocytes, which leads to contractile dysfunction and cardiac abnormalities. These changes may contribute to increased cardiovascular disease in the elderly. Inducible antioxidant pathways are regulated by nuclear erythroid 2 p45-related factor 2 (Nrf2) through antioxidant response cis-elements (AREs) and are impaired in the aging heart. Whereas acute exercise stress (AES) activates Nrf2 signaling and promotes myocardial antioxidant function in young mice (∼2 months), aging mouse (>23 months) hearts exhibit significant oxidative stress as compared to those of the young. The purpose of this study was to investigate age-dependent regulation of Nrf2-antioxidant mechanisms and redox homeostasis in mouse hearts and the impact of exercise. Old mice were highly susceptible to oxidative stress following high endurance exercise stress (EES), but demonstrated increased adaptive redox homeostasis after moderate exercise training (MET; 10m/min, for 45 min/day) for ∼6 weeks. Following EES, transcription and protein levels for most of the ARE-antioxidants were increased in young mice but their induction was blunted in aging mice. In contrast, 6-weeks of chronic MET promoted nuclear levels of Nrf2 along with its target antioxidants in the aging heart to near normal levels as seen in young mice. These observations suggest that enhancing Nrf2 function and endogenous cytoprotective mechanisms by MET, may combat age-induced ROS/RNS and protect the myocardium from oxidative stress diseases.


Journal of Experimental Medicine | 2013

Notch activation inhibits AML growth and survival: a potential therapeutic approach

Sankaranarayanan Kannan; Robert Sutphin; Mandy Hall; Leonard S Golfman; Wendy Fang; Riitta Nolo; Lauren J. Akers; Richard A. Hammitt; John S. McMurray; Steven M. Kornblau; Ari Melnick; Maria E. Figueroa; Patrick A. Zweidler-McKay

Activating Notch with a Notch agonist peptide induces apoptosis in AML patient samples.


Antioxidants & Redox Signaling | 2011

Sustained Activation of Nuclear Erythroid 2-Related Factor 2/Antioxidant Response Element Signaling Promotes Reductive Stress in the Human Mutant Protein Aggregation Cardiomyopathy in Mice

Namakkal S. Rajasekaran; Saradhadevi Varadharaj; Gayatri D Khanderao; Christopher J. Davidson; Sankaranarayanan Kannan; Matthew A. Firpo; Jay L. Zweier; Ivor J. Benjamin

Inheritable missense mutations in small molecular weight heat-shock proteins (HSP) with chaperone-like properties promote self-oligomerization, protein aggregation, and pathologic states such as hypertrophic cardiomyopathy in humans. We recently described that human mutant αB-crystallin (hR120GCryAB) overexpression that caused protein aggregation cardiomyopathy (PAC) was genetically linked to dysregulation of the antioxidant system and reductive stress (RS) in mice. However, the molecular mechanism that induces RS remains only partially understood. Here we define a critical role for the regulatory nuclear erythroid 2-related factor 2 (Nrf2)-Kelch-like ECH-associated protein (Keap1) pathway--the master transcriptional controller of antioxidants, in the pathogenesis of PAC and RS. In myopathic mice, increased reactive oxygen species signaling during compensatory hypertrophy (i.e., 3 months) was associated with upregulation of key antioxidants in a manner consistent with Nrf2/antioxidant response element (ARE)-dependent transactivation. In transcription factor assays, we further demonstrate increased binding of Nrf2 to ARE during the development of cardiomyopathy. Of interest, we show that the negative regulator Keap1 was predominantly sequestrated in protein aggregates (at 6 months), suggesting that sustained nuclear translocation of activated Nrf2 may be a contributing mechanism for RS. Our findings implicate a novel pathway for therapeutic targeting and abrogating RS linked to experimental cardiomyopathy in humans. Antioxid.


Biochimica et Biophysica Acta | 2012

Disruption of Nrf2/ARE signaling impairs antioxidant mechanisms and promotes cell degradation pathways in aged skeletal muscle.

Corey J. Miller; Sellamuthu S. Gounder; Sankaranarayanan Kannan; Karan Goutam; Vasanthi R. Muthusamy; Matthew A. Firpo; J. David Symons; Robert Paine; John R. Hoidal; Namakkal S. Rajasekaran

Age-associated decline in antioxidant potential and accumulation of reactive oxygen/nitrogen species are primary causes for multiple health problems, including muscular dystrophy and sarcopenia. The role of the nuclear erythroid-2-p45-related factor-2 (Nrf2) signaling has been implicated in antioxidant gene regulation. Here, we investigated the loss-of-function mechanisms for age-dependent regulation of Nrf2/ARE (Antioxidant Response Element) signaling in skeletal muscle (SM). Under basal physiological conditions, disruption of Nrf2 showed minimal effects on antioxidant defenses in young (2months) Nrf2-/- mice. Interestingly, mRNA and protein levels of NADH Quinone Oxidase-1 were dramatically (*P<0.001) decreased in Nrf2-/- SM when compared to WT at 2months of age, suggesting central regulation of NQO1 occurs through Nrf2. Subsequent analysis of the Nrf2-dependent transcription and translation showed that the aged mice (>24months) had a significant increase in ROS along with a decrease in glutathione (GSH) levels and impaired antioxidants in Nrf2-/- when compared to WT SM. Further, disruption of Nrf2 appears to induce oxidative stress (increased ROS, HNE-positive proteins), ubiquitination and pro-apoptotic signals in the aged SM of Nrf2-/- mice. These results indicate a direct role for Nrf2/ARE signaling on impairment of antioxidants, which contribute to muscle degradation pathways upon aging. Our findings conclude that though the loss of Nrf2 is not amenable at younger age; it could severely affect the SM defenses upon aging. Thus, Nrf2 signaling might be a potential therapeutic target to protect the SM from age-dependent accumulation of ROS by rescuing redox homeostasis to prevent age-related muscle disorders such as sarcopenia and myopathy.


Cancer Research | 2006

Low and High Dose UVB Regulation of Transcription Factor NF-E2-Related Factor 2

Sankaranarayanan Kannan; Anil K. Jaiswal

Transcription factor NF-E2-related factor 2 (Nrf2) regulates antioxidant response element (ARE)-mediated expression and coordinated induction of chemoprotective proteins in response to chemical stress. In this report, we investigated Nrf2 response to low and high dose UVB irradiation. Low dose (7.5 J/m(2)) UVB exposure of mouse hepatoma, mouse keratinocyte, and human skin fibroblast cells led to the nuclear accumulation of Nrf2 and up-regulation of ARE-mediated gene expression. On the contrary, and intriguingly, high dose (20 J/m(2)) UVB exposure of cells led to the nuclear exclusion of Nrf2 and down-regulation of chemoprotective gene expression with possible implications in UVB carcinogenesis. We investigated the mechanism by which high dose UVB induced the nuclear exclusion of Nrf2. Prior treatment with nuclear export inhibitor, leptomycin B, abrogated the UVB-induced nuclear exclusion of Nrf2, indicating that the decrease of Nrf2 in the nucleus was due to the nuclear export of Nrf2. High dose UVB increased the phosphorylation of Nrf2Y568 which stimulated the nuclear export of Nrf2. Mutation of Nrf2Y568 to phenylalanine and src kinase inhibitor PP2 abrogated/reduced the UVB-induced phosphorylation of Nrf2Y568 and nuclear exclusion of Nrf2. Transfection with src family member Fyn small interfering RNA resulted in the nuclear accumulation of Nrf2 and an increase in the expression and UVB induction of ARE-mediated gene expression. UVB exposure also induced the nuclear localization of Fyn. These results suggest that high dose UVB induced the activation/nuclear localization of Fyn which led to increased phosphorylation of Nrf2Y568 and enhanced nuclear export of Nrf2. This resulted in nuclear exclusion of Nrf2 and down-regulation of ARE-mediated chemoprotective gene expression.


Blood | 2011

Notch/HES1-mediated PARP1 activation: a cell-type specific mechanism for tumor suppression

Sankaranarayanan Kannan; Wendy Fang; Guangchun Song; Charles G. Mullighan; Richard A. Hammitt; John S. McMurray; Patrick A. Zweidler-McKay

Notch signaling plays both oncogenic and tumor suppressor roles, depending on cell type. In contrast to T-cell acute lymphoblastic leukemia (ALL), where Notch activation promotes leukemogenesis, induction of Notch signaling in B-cell ALL (B-ALL) leads to growth arrest and apoptosis. The Notch target Hairy/Enhancer of Split1 (HES1) is sufficient to reproduce this tumor suppressor phenotype in B-ALL; however, the mechanism is not yet known. We report that HES1 regulates proapoptotic signals by the novel interacting protein Poly ADP-Ribose Polymerase1 (PARP1) in a cell type-specific manner. Interaction of HES1 with PARP1 inhibits HES1 function, induces PARP1 activation, and results in PARP1 cleavage in B-ALL. HES1-induced PARP1 activation leads to self-ADP ribosylation of PARP1, consumption of nicotinamide adenine dinucleotide(+), diminished adenosine triphosphate levels, and translocation of apoptosis-inducing factor from mitochondria to the nucleus, resulting in apoptosis in B-ALL but not T-cell ALL. Importantly, induction of Notch signaling by the Notch agonist peptide Delta/Serrate/Lag-2 can reproduce these events and leads to B-ALL apoptosis. The novel interaction of HES1 and PARP1 in B-ALL modulates the function of the HES1 transcriptional complex and signals through PARP1 to induce apoptosis. This mechanism shows a cell type-specific proapoptotic pathway that may lead to Notch agonist-based cancer therapeutics.


Cardiovascular Research | 2013

Nrf2 deficiency prevents reductive stress-induced hypertrophic cardiomyopathy

Sankaranarayanan Kannan; Vasanthi R. Muthusamy; Kevin J. Whitehead; Li Wang; Aldrin V. Gomes; Sheldon E. Litwin; Thomas W. Kensler; E. Dale Abel; John R. Hoidal; Namakkal S. Rajasekaran

AIMS Mutant protein aggregation (PA) cardiomyopathy (MPAC) is characterized by reductive stress (RS), PA (of chaperones and cytoskeletal components), and ventricular dysfunction in transgenic mice expressing human mutant CryAB (hmCryAB). Sustained activation of nuclear erythroid-2 like factor-2 (Nrf2) causes RS, which contributes to proteotoxic cardiac disease. The goals of this pre-clinical study were to (i) investigate whether disrupting Nrf2-antioxidant signalling prevents RS and rescues redox homeostasis in hearts expressing the mutant chaperone and (ii) elucidate mechanisms that could delay proteotoxic cardiac disease. METHODS AND RESULTS Non-transgenic (NTG), transgenic (TG) with MPAC and MPAC-TG:Nrf2-deficient (Nrf2-def) mice were used in this study. The effects of Nrf2 diminution (Nrf2±) on RS mediated MPAC in TG mice were assessed at 6-7 and 10 months of age. The diminution of Nrf2 prevented RS and prolonged the survival of TG mice (∼50 weeks) by an additional 20-25 weeks. The TG:Nrf2-def mice did not exhibit cardiac hypertrophy at even 60 weeks, while the MPAC-TG mice developed pathological hypertrophy and heart failure starting at 24-28 weeks of age. Aggregation of cardiac proteins was significantly reduced in TG:Nrf2-def when compared with TG mice at 7 months. Preventing RS and maintaining redox homeostasis in the TG:Nrf2-def mice ameliorated PA, leading to decreased ubiquitination of proteins. CONCLUSION Nrf2 deficiency rescues redox homeostasis, which reduces aggregation of mutant proteins, thereby delaying the proteotoxic pathological cardiac remodelling caused by RS and toxic protein aggregates.


Investigational New Drugs | 2012

The combination of the novel glycolysis inhibitor 3-BrOP and rapamycin is effective against neuroblastoma

Alejandro G. Levy; Peter E. Zage; Lauren J. Akers; Maurizio L. Ghisoli; Zhao Chen; Wendy Fang; Sankaranarayanan Kannan; Timothy Graham; Lizhi Zeng; Anna R. Franklin; Peng Huang; Patrick A. Zweidler-McKay

SummaryChildren with high-risk and recurrent neuroblastoma have poor survival rates, and novel therapies are needed. Many cancer cells have been found to preferentially employ the glycolytic pathway for energy generation, even in the presence of oxygen. 3-BrOP is a novel inhibitor of glycolysis, and has demonstrated efficacy against a wide range of tumor types. To determine whether human neuroblastoma cells are susceptible to glycolysis inhibition, we evaluated the role of 3-BrOP in neuroblastoma model systems. Neuroblastoma tumor cell lines demonstrated high rates of lactate accumulation and low rates of oxygen consumption, suggesting a potential susceptibility to inhibitors of glycolysis. In all ten human tested neuroblastoma tumor cell lines, 3-BrOP induced cell death via apoptosis in a dose and time dependent manner. Furthermore, 3-BrOP-induced depletion of ATP levels correlated with decreased neuroblastoma cell viability. In a mouse neuroblastoma xenograft model, glycolysis inhibition with 3-BrOP demonstrated significantly reduced final tumor weight. In neuroblastoma tumor cells, treatment with 3-BrOP induced mTOR activation, and the combination of 3-BrOP and mTOR inhibition with rapamycin demonstrated synergistic efficacy. Based on these results, neuroblastoma tumor cells are sensitive to treatment with inhibitors of glycolysis, and the demonstrated synergy with rapamycin suggests that the combination of glycolysis and mTOR inhibitors represents a novel therapeutic approach for neuroblastoma that warrants further investigation.


Oncotarget | 2017

Targeting P-selectin blocks neuroblastoma growth

Riitta Nolo; Shelley M. Herbrich; Arvind Rao; Patrick A. Zweidler-McKay; Sankaranarayanan Kannan; Vidya Gopalakrishnan

Selectins and their ligands have been implicated in tumor growth and progression in carcinomas, but their role in neuroblastoma has not been systematically examined. In the current study we evaluated L-, P- and E-selectin binding to neuroblastoma cells and the expression of some of their known ligands, namely CD44, CD24 and P-selectin glycoprotein ligand-1 (PSGL-1). Genetic loss of PSGL-1 or CD24 and pharmacological inhibition of P-selectin reduced P-selectin binding to neuroblastoma cells in vitro. Targeting P-selectin using specific antibodies promoted a significant reduction in the growth of neuroblastoma tumors in vivo. In mechanistic studies binding of P-selectin to neuroblastoma cells activated Src and several other pro-survival kinases such as ERK1, AKT, FAK and p38. Interestingly, comparative mass single cell cytometry (CyTOF) analyses revealed considerable intra- and inter-cell line heterogeneity with respect to response to P-selectin binding. Additionally, the downstream response to all selectins showed general similarity. Our findings reported here not only provide pre-clinical evidence in support of therapeutic targeting of P-selectin, but also highlight the heterogeneity in response of tumor cells to P-selectin binding. These observations provide the basis for combining P-selectin inhibition with other targeted therapies for neuroblastoma.

Collaboration


Dive into the Sankaranarayanan Kannan's collaboration.

Top Co-Authors

Avatar

Patrick A. Zweidler-McKay

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Wendy Fang

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Namakkal S. Rajasekaran

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Riitta Nolo

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

E. Dale Abel

Roy J. and Lucille A. Carver College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge