Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Patrick Balaguer is active.

Publication


Featured researches published by Patrick Balaguer.


Environmental Health Perspectives | 2011

Peroxisome Proliferator-Activated Receptor γ Is a Target for Halogenated Analogs of Bisphenol A

Anne Riu; Marina Grimaldi; Albane le Maire; Gilbert Bey; Kevin J. Phillips; Abdelhay Boulahtouf; Elisabeth Perdu; Daniel Zalko; William Bourguet; Patrick Balaguer

Background: The occurrence of halogenated analogs of the xenoestrogen bisphenol A (BPA) has been recently demonstrated both in environmental and human samples. These analogs include brominated [e.g., tetrabromobisphenol A (TBBPA)] and chlorinated [e.g., tetrachlorobisphenol A (TCBPA)] bisphenols, which are both flame retardants. Because of their structural homology with BPA, such chemicals are candidate endocrine disruptors. However, their possible target(s) within the nuclear hormone receptor superfamily has remained unknown. Objectives: We investigated whether BPA and its halogenated analogs could be ligands of estrogen receptors (ERs) and peroxisome proliferator–activated receptors (PPARs) and act as endocrine-disrupting chemicals. Methods: We studied the activity of compounds using reporter cell lines expressing ERs and PPARs. We measured the binding affinities to PPARγ by competitive binding assays with [3H]-rosiglitazone and investigated the impact of TBBPA and TCBPA on adipocyte differentiation using NIH3T3-L1 cells. Finally, we determined the binding mode of halogenated BPAs to PPARγ by X-ray crystallography. Results: We observed that TBBPA and TCBPA are human, zebrafish, and Xenopus PPARγ ligands and determined the mechanism by which these chemicals bind to and activate PPARγ. We also found evidence that activation of ERα, ERβ, and PPARγ depends on the degree of halogenation in BPA analogs. We observed that the bulkier brominated BPA analogs, the greater their capability to activate PPARγ and the weaker their estrogenic potential. Conclusions: Our results strongly suggest that polyhalogenated bisphenols could function as obesogens by acting as agonists to disrupt physiological functions regulated by human or animal PPARγ.


Environmental Science & Technology | 2014

Benchmarking Organic Micropollutants in Wastewater, Recycled Water and Drinking Water with In Vitro Bioassays

Beate I. Escher; Mayumi Allinson; Rolf Altenburger; Peter A. Bain; Patrick Balaguer; Wibke Busch; Jordan Crago; Nancy D. Denslow; Elke Dopp; Klára Hilscherová; Andrew R. Humpage; Anu Kumar; Marina Grimaldi; B. Sumith Jayasinghe; Barbora Jarošová; Ai Jia; Sergei S. Makarov; Keith A. Maruya; Alex Medvedev; Alvine C. Mehinto; Jamie E. Mendez; Anita H. Poulsen; Erik Prochazka; Jessica Richard; Andrea Schifferli; Daniel Schlenk; Stefan Scholz; Fujio Shiraishi; Shane A. Snyder; Guanyong Su

Thousands of organic micropollutants and their transformation products occur in water. Although often present at low concentrations, individual compounds contribute to mixture effects. Cell-based bioassays that target health-relevant biological endpoints may therefore complement chemical analysis for water quality assessment. The objective of this study was to evaluate cell-based bioassays for their suitability to benchmark water quality and to assess efficacy of water treatment processes. The selected bioassays cover relevant steps in the toxicity pathways including induction of xenobiotic metabolism, specific and reactive modes of toxic action, activation of adaptive stress response pathways and system responses. Twenty laboratories applied 103 unique in vitro bioassays to a common set of 10 water samples collected in Australia, including wastewater treatment plant effluent, two types of recycled water (reverse osmosis and ozonation/activated carbon filtration), stormwater, surface water, and drinking water. Sixty-five bioassays (63%) showed positive results in at least one sample, typically in wastewater treatment plant effluent, and only five (5%) were positive in the control (ultrapure water). Each water type had a characteristic bioanalytical profile with particular groups of toxicity pathways either consistently responsive or not responsive across test systems. The most responsive health-relevant endpoints were related to xenobiotic metabolism (pregnane X and aryl hydrocarbon receptors), hormone-mediated modes of action (mainly related to the estrogen, glucocorticoid, and antiandrogen activities), reactive modes of action (genotoxicity) and adaptive stress response pathway (oxidative stress response). This study has demonstrated that selected cell-based bioassays are suitable to benchmark water quality and it is recommended to use a purpose-tailored panel of bioassays for routine monitoring.


Molecular and Cellular Endocrinology | 2002

Phenylphenols, biphenols, bisphenol-A and 4-tert-octylphenol exhibit α and β estrogen activities and antiandrogen activity in reporter cell lines

Françoise Paris; Patrick Balaguer; Béatrice Térouanne; Nadège Servant; Caroline Lacoste; Jean-Pierre Cravedi; Jean-Claude Nicolas; Charles Sultan

We previously demonstrated the interactions of different chemical compounds with estrogen receptors ERα and ERβ and the androgen receptor (AR) using different reporter cell lines. In this study, we characterize the ERα, ERβ and AR activity of different biphenyls using the same tools. We provide evidence that several phenyl derivatives present both estrogenic and antiandrogenic activity. The extent of hydroxylation and the position of the hydroxyl function were important in determining their estrogenicity and antiandrogenicity. Of the tested compounds, bisphenol-A and 4,4′ biphenol had very high estrogenic activity, although it was lower than that of the strong estrogenic alkylphenol, 4-tert-octylphenol. Bisphenol-A and 4,4′ biphenol were able to activate ERs at concentrations lower than 1 μM, whereas the other compounds only activated at concentrations above 1 μM. Interestingly, 4,4′ biphenol was a better agonist for ERβ than for ERα. No androgenic activity was detected for any of these compounds. Bisphenol-A, 3-OH phenylphenol, 4-OH phenylphenol and 4,4′ biphenol exhibited antiandrogenic activity close to that of 4-tert-octylphenol (IC50≈5 μM). In whole cell binding assays, these compounds displaced [3H] R1881 with Ki=10 μM. Although these Ki values seem high in comparison with that of hydroxyflutamide (0.4 μM), one must keep in mind that environmental chemicals can accumulate in adipose tissues for several years. In conclusion, these environmental chemicals may have a negative impact on androgen action during fetal and post-natal life.


EMBO Reports | 2009

Activation of RXR–PPAR heterodimers by organotin environmental endocrine disruptors

Albane le Maire; Marina Grimaldi; Dominique Roecklin; Sonia Dagnino; Valérie Vivat-Hannah; Patrick Balaguer; William Bourguet

The nuclear receptor retinoid X receptor‐α (RXR‐α)–peroxisome proliferator‐activated receptor‐γ (PPAR‐γ) heterodimer was recently reported to have a crucial function in mediating the deleterious effects of organotin compounds, which are ubiquitous environmental contaminants. However, because organotins are unrelated to known RXR‐α and PPAR‐γ ligands, the mechanism by which these compounds bind to and activate the RXR‐α–PPAR‐γ heterodimer at nanomolar concentrations has remained elusive. Here, we show that tributyltin (TBT) activates all three RXR–PPAR‐α, ‐γ, ‐δ heterodimers, primarily through its interaction with RXR. In addition, the 1.9 Å resolution structure of the RXR‐α ligand‐binding domain in complex with TBT shows a covalent bond between the tin atom and residue Cys 432 of helix H11. This interaction largely accounts for the high binding affinity of TBT, which only partly occupies the RXR‐α ligand‐binding pocket. Our data allow an understanding of the binding and activation properties of the various organotins and suggest a mechanism by which these tin compounds could affect other nuclear receptor signalling pathways.


Biochimica et Biophysica Acta | 1999

Differential expression of the RTP/Drg1/Ndr1 gene product in proliferating and growth arrested cells.

David Piquemal; Dominique Joulia; Patrick Balaguer; Annie Basset; Jacques Marti; Thëre©se Commes

Using a differential display method to identify differentiation-related genes in human myelomonocytic U937 cells, we cloned the cDNA of a gene identical to Drg1 and homologous to other recently discovered genes, respectively human RTP and Cap43 and mouse Ndr1 and TDD5 genes. Their open reading frames encode proteins highly conserved between mouse and man but which do not share homology with other know proteins. Conditions in which mRNAs are up-regulated suggest a role for the protein in cell growth arrest and terminal differentiation. We raised antibodies against a synthetic peptide reproducing a characteristic sequence of the putative polypeptide chain. These antibodies revealed a protein with the expected 43 kDa molecular mass, up-regulated by phorbol ester, retinoids and 1,25-(OH)2 vitamin D3 in U937 cells. It was increased in mammary carcinoma MCF-7 cells treated by retinoids and by the anti-estrogen ICI 182,780 but not by 4-hydroxytamoxifen. The mouse Drg1 homologous protein was up-regulated by retinoic acid in C2 myogenic cells. The diversity of situations in which expression of RTP/Drg1/Ndr1 has now been observed shows that it is widely distributed and up-regulated by various agents. Here we show that ligands of nuclear transcription factors involved in cell differentiation are among the inducers of this novel protein.


Toxicology and Applied Pharmacology | 2013

In vitro study on the agonistic and antagonistic activities of bisphenol-S and other bisphenol-A congeners and derivatives via nuclear receptors

José-Manuel Molina-Molina; Esperanza Amaya; Marina Grimaldi; José-María Sáenz; Macarena Real; Mariana F. Fernández; Patrick Balaguer; Nicolás Olea

Bisphenols are a group of chemicals structurally similar to bisphenol-A (BPA) in current use as the primary raw material in the production of polycarbonate and epoxy resins. Some bisphenols are intended to replace BPA in several industrial applications. This is the case of bisphenol-S (BPS), which has an excellent stability at high temperature and resistance to sunlight. Studies on the endocrine properties of BPS have focused on its interaction with human estrogen receptor alpha (hERα), but information on its interaction with other nuclear receptors is scarce. The aim of this study was to investigate interactions of BPS, BPF, BPA and its halogenated derivatives, tetrachlorobisphenol A (TCBPA), and tetrabromobisphenol A (TBBPA), with human estrogen receptors (hERα and hERβ), androgen receptor (hAR), and pregnane X receptor (hPXR), using a panel of in vitro bioassays based on competitive binding to nuclear receptors (NRs), reporter gene expression, and cell proliferation assessment. BPS, BPF, and BPA efficiently activated both ERs, while TCBPA behaved as weak hERα agonist. Unlike BPF and BPA, BPS was more active in the hERβ versus hERα assay. BPF and BPA were full hAR antagonists (BPA>BPF), whereas BPA and BPS were weak hAR agonists. Only BPA, TCBPA, and TBBPA, were hPXR agonists (TCBPA>TBBPA>BPA). These findings provide evidence that BPA congeners and derivatives disrupt multiple NRs and may therefore interfere with the endocrine system. Hence, further research is needed to evaluate the potential endocrine-disrupting activity of putative BPA substitutes.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Structural and mechanistic insights into bisphenols action provide guidelines for risk assessment and discovery of bisphenol A substitutes

Vanessa Delfosse; Marina Grimaldi; Jean-Luc Pons; Abdelhay Boulahtouf; Albane le Maire; Vincent Cavaillès; Gilles Labesse; William Bourguet; Patrick Balaguer

Bisphenol A (BPA) is an industrial compound and a well known endocrine-disrupting chemical with estrogenic activity. The widespread exposure of individuals to BPA is suspected to affect a variety of physiological functions, including reproduction, development, and metabolism. Here we report that the mechanisms by which BPA and two congeners, bisphenol AF and bisphenol C (BPC), bind to and activate estrogen receptors (ER) α and β differ from that used by 17β-estradiol. We show that bisphenols act as partial agonists of ERs by activating the N-terminal activation function 1 regardless of their effect on the C-terminal activation function 2, which ranges from weak agonism (with BPA) to antagonism (with BPC). Crystallographic analysis of the interaction between bisphenols and ERs reveals two discrete binding modes, reflecting the different activities of compounds on ERs. BPA and 17β-estradiol bind to ERs in a similar fashion, whereas, with a phenol ring pointing toward the activation helix H12, the orientation of BPC accounts for the marked antagonist character of this compound. Based on structural data, we developed a protocol for in silico evaluation of the interaction between bisphenols and ERs or other members of the nuclear hormone receptor family, such as estrogen-related receptor γ and androgen receptor, which are two known main targets of bisphenols. Overall, this study provides a wealth of tools and information that could be used for the development of BPA substitutes devoid of nuclear hormone receptor-mediated activity and more generally for environmental risk assessment.


PLOS ONE | 2010

Transcriptional Regulation of Human and Rat Hepatic Lipid Metabolism by the Grapefruit Flavonoid Naringenin: Role of PPARα, PPARγ and LXRα

Jonathan Goldwasser; Pazit Y. Cohen; Eric Yang; Patrick Balaguer; Martin L. Yarmush; Yaakov Nahmias

Disruption of lipid and carbohydrate homeostasis is an important factor in the development of prevalent metabolic diseases such as diabetes, obesity, and atherosclerosis. Therefore, small molecules that could reduce insulin dependence and regulate dyslipidemia could have a dramatic effect on public health. The grapefruit flavonoid naringenin has been shown to normalize lipids in diabetes and hypercholesterolemia, as well as inhibit the production of HCV. Here, we demonstrate that naringenin regulates the activity of nuclear receptors PPARα, PPARγ, and LXRα. We show it activates the ligand-binding domain of both PPARα and PPARγ, while inhibiting LXRα in GAL4-fusion reporters. Using TR-FRET, we show that naringenin is a partial agonist of LXRα, inhibiting its association with Trap220 co-activator in the presence of TO901317. In addition, naringenin induces the expression of PPARα co-activator, PGC1α. The flavonoid activates PPAR response element (PPRE) while suppressing LXRα response element (LXRE) in human hepatocytes, translating into the induction of PPAR-regulated fatty acid oxidation genes such as CYP4A11, ACOX, UCP1 and ApoAI, and inhibition of LXRα-regulated lipogenesis genes, such as FAS, ABCA1, ABCG1, and HMGR. This effect results in the induction of a fasted-like state in primary rat hepatocytes in which fatty acid oxidation increases, while cholesterol and bile acid production decreases. Our findings explain the myriad effects of naringenin and support its continued clinical development. Of note, this is the first description of a non-toxic, naturally occurring LXRα inhibitor.


Molecular and Cellular Endocrinology | 2000

A stable prostatic bioluminescent cell line to investigate androgen and antiandrogen effects

Béatrice Térouanne; Bouchra Tahiri; Virginie Georget; Charles Belon; Nicolas Poujol; Christophe Avances; Francesco Orio; Patrick Balaguer; Charles Sultan

We developed a new stable prostatic cell line expressing the human androgen receptor (AR) and the AR-responsive reporter gene to generate a powerful tool for investigating androgen action and for rapid screening of agonists and antagonists. The AR-deficient PC-3 cells were stably transfected with pSG(5)-puro-hAR and pMMTV-neo-Luc. After selection with puromycin and neomycin, one highly inducible clone was isolated and named PALM, for PC-3-Androgen receptor-Luciferase-MMTV. The expression of hAR was confirmed by western blot and steroid-binding assays on the whole cells. The transcriptional activity of the clone was measured after incubation of cells with increasing concentrations of synthetic R1881 or natural androgens (DHT and testosterone). The three agonists had the same maximal activity at 0.1 microM and the fold induction was equal to 20. The agonist and antagonist activities of the steroidal antiandrogens (cyproterone acetate and RU2956) and the non-steroidal antiandrogens (nilutamide, bicalutamide, inocoterone and hydroxyflutamide) measured with the PALM cells were in good correlation with the results obtained with transiently transfected cells. The selectivity in steroid transactivation was demonstrated with estradiol, progesterone, cortisol, dexamethasone and aldosterone. Spironolactone and RU486 showed partial agonist and antagonist activities, whereas R5020 presented only a partial antagonist activity. We here demonstrate that this stable transfectant provides an accurate tool for studying wild-type human AR activation and its regulation by androgens and antiandrogens in a human prostatic epithelial cell, which is routinely available and remains androgen-responsive in vitro.


Environmental Toxicology and Chemistry | 2007

Chemical and biological analysis of endocrine‐disrupting hormones and estrogenic activity in an advanced sewage treatment plant

Mathieu Muller; Fanja Rabenoelina; Patrick Balaguer; Dominique Patureau; Karin Lemenach; Hélène Budzinski; Damià Barceló; Miren López de Alda; Marina Kuster; Jean-Philippe Delgenès; Guillermina Hernandez-Raquet

The steroid hormones estrone (E1), 17β-estradiol (E2), estriol (E3), 17α-ethinylestradiol (EE2), and their conjugated forms were surveyed throughout an advanced sewage treatment plant (STP). The estrogen concentrations in water and sludge samples, collected in October 2004 and April 2005, were determined by gas chromatography-mass spectrometry and liquid chromatography-tandem mass spectrometry. Simultaneously, the estrogenic activity was quantified using estrogen-responsive reporter cell lines (MELN) to investigate the behavior of overall estrogenic compounds. The estrogen concentrations in the inlet ranged from 200 to 500 ng/L, with the contribution of conjugated forms being higher than 50%. The major estrogens in influent were E1 and E3. The estrogenic activity was between 25 and 130 ng/L of E2 equivalents (EEQs). Estrogen concentrations and estrogenicity measured in the inlet and in primary treated sewage were similar, showing a weak impact of primary treatment on hormone removal. In contrast, both estrogen concentration and estrogenicity decreased during biological treatment, with high removal efficiencies (>90%). Estrone, E2, and EE2 persisted in the treated water below 10 ng/L, whereas the estrogenicity was lower than 5 ng/L of EEQs. Estrogen mass flux in the effluent and sludge represented less than 2 and 4%, respectively, of the inlet. Consequently, the fraction of estrogens sorbed into the sludge was very small, and biodegradation was the main vehicle for estrogen elimination. This dual approach, comparing chemical and biological analysis, allowed us to confirm that most of the estrogenic activity occurring in this STP, which receives mainly domestic sewage, resulted from sex hormones.

Collaboration


Dive into the Patrick Balaguer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hélène Fenet

University of Montpellier

View shared research outputs
Top Co-Authors

Avatar

Jean-Marc Porcher

University of Reims Champagne-Ardenne

View shared research outputs
Top Co-Authors

Avatar

Daniel Zalko

French Institute of Health and Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Claude Casellas

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Guillermina Hernandez-Raquet

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Laurent Debrauwer

Institut national de la recherche agronomique

View shared research outputs
Researchain Logo
Decentralizing Knowledge