Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Patrick C. McGuire is active.

Publication


Featured researches published by Patrick C. McGuire.


Nature | 2008

Hydrated silicate minerals on Mars observed by the Mars Reconnaissance Orbiter CRISM instrument

John F. Mustard; Scott L. Murchie; Shannon Pelkey; B. L. Ehlmann; Ralph E. Milliken; John A. Grant; Jean-Pierre Bibring; F. Poulet; Jack B. Bishop; E. Z. Noe Dobrea; L. H. Roach; F. P. Seelos; Raymond E. Arvidson; Sandra Margot Wiseman; Robert O. Green; C. D. Hash; David Carl Humm; Erick R. Malaret; J. A. McGovern; Kimberly D. Seelos; Thomas E. Clancy; Roger N. Clark; D. J. Des Marais; Noam R. Izenberg; Amy T. Knudson; Yves Langevin; Terry Z. Martin; Patrick C. McGuire; Richard V. Morris; Mark S. Robinson

Phyllosilicates, a class of hydrous mineral first definitively identified on Mars by the OMEGA (Observatoire pour la Mineralogie, L’Eau, les Glaces et l’Activitié) instrument, preserve a record of the interaction of water with rocks on Mars. Global mapping showed that phyllosilicates are widespread but are apparently restricted to ancient terrains and a relatively narrow range of mineralogy (Fe/Mg and Al smectite clays). This was interpreted to indicate that phyllosilicate formation occurred during the Noachian (the earliest geological era of Mars), and that the conditions necessary for phyllosilicate formation (moderate to high pH and high water activity) were specific to surface environments during the earliest era of Mars’s history. Here we report results from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) of phyllosilicate-rich regions. We expand the diversity of phyllosilicate mineralogy with the identification of kaolinite, chlorite and illite or muscovite, and a new class of hydrated silicate (hydrated silica). We observe diverse Fe/Mg-OH phyllosilicates and find that smectites such as nontronite and saponite are the most common, but chlorites are also present in some locations. Stratigraphic relationships in the Nili Fossae region show olivine-rich materials overlying phyllosilicate-bearing units, indicating the cessation of aqueous alteration before emplacement of the olivine-bearing unit. Hundreds of detections of Fe/Mg phyllosilicate in rims, ejecta and central peaks of craters in the southern highland Noachian cratered terrain indicate excavation of altered crust from depth. We also find phyllosilicate in sedimentary deposits clearly laid by water. These results point to a rich diversity of Noachian environments conducive to habitability.


The Sociological Review | 1998

The making of an industry: electricity in the United States

Mark Granovetter; Patrick C. McGuire

Although economic sociology has enjoyed a strong resurgence in recent years, it has focused on relatively low or high levelsof aggregation. One central concern has been what determines the actions of individuals and firms, and another the role of government and largescale interest groups in the governance and evolution of the economy. With some notable exceptions (eg, Hirsch, 1972; Campbell, Lindberg and Hollingsworth, 1992; Dobbin, 1994; Roy, 1997), few have paid close attention to middle levels of aggregation such as industries. Problems of industrial organization have largely been left to economists, who treat industry boundaries as resulting unproblematically from the nature of the product, the state of technology at a given time (as summed up by production functions), consumer demand, and the attempt to reduce production and transaction costs. Sociologists have reacted to some general arguments on the subject of organizational form, especially those of Chandler (1962, 1975, 1990) and Williamson (1975, 1985), and to some of the other standard assumptions. But these critiques, whatever their merits, have been largely defensive; they have followed and responded to economic arguments rather than setting the agenda with a distinctively sociological position about industry and organizational form. A substantial sociology of industry must be a persuasive alternative based on serious research about particular industries and their evolution, rooted in a coherent view of how people and organizations form and co-operate in such a way as to produce those goods and services that consumers demand. We do not dispute the convenience of defining industries as sets of firms that produce the same or related products. But we argue


intelligent robots and systems | 2002

Multi-modal human-machine communication for instructing robot grasping tasks

Patrick C. McGuire; Jannik Fritsch; Jochen J. Steil; Frank Röthling; Gernot A. Fink; Sven Wachsmuth; Gerhard Sagerer; Helge Ritter

A major challenge for the realization of intelligent robots is to supply them with cognitive abilities in order to allow ordinary users to program them easily and intuitively. One approach to such programming is teaching work tasks by interactive demonstration. To make this effective and convenient for the user, the machine must be capable of establishing a common focus of attention and be able to use and integrate spoken instructions, visual perception, and non-verbal clues like gestural commands. We report progress in building a hybrid architecture that combines statistical methods, neural networks, and finite state machines into an integrated system for instructing grasping tasks by man-machine interaction. The system combines the GRAVIS-robot for visual attention and gestural instruction with an intelligent interface for speech recognition and linguistic interpretation, and a modality fusion module to allow multi-modal task-oriented man-machine communication with respect to dextrous robot manipulation of objects.


Nature | 1998

Imaging circumstellar environments with a nulling interferometer

Philip M. Hinz; J. Roger P. Angel; William F. Hoffmann; Donald W. McCarthy; Patrick C. McGuire; Matt Cheselka; Joseph L. Hora; Neville J. Woolf

Extrasolar planets must be imaged directly if their nature is to be better understood. But this will be difficult, as the bright light from the parent star (or rather its diffracted halo in the imaging apparatus) can easily overwhelm nearby faint sources. Bracewell has proposed a way of selectively removing starlight before detection, by superposing the light from two telescopes so that the stellar wavefronts interfere destructively. Such a ‘nulling’ interferometer could be used in space to search for extrasolar Earth-like planets through their thermal emission and to determine through spectroscopic analysis if they possess the atmospheric signatures of life. Here we report mid-infrared observations using two co-mounted telescopes of the Multiple Mirror Telescope that demonstrate the viability of this technique. Images of unresolved stars are seen to disappear almost completely, while light from a nearby source as close as 0.2 arcsec remains, as shown by images of Betelgeuse. With this star cancelled, there remains the thermal image of its surrounding, small dust nebula. In the future, larger ground-based interferometers that correct for atmospheric distortions (using adaptive optics) should achieve better cancellation, allowing direct detection of warm, Jupiter-size planets and faint zodiacal dust around other nearby stars.


arXiv: Astrophysics | 2001

Self-Interacting Dark Matter

Benjamin D. Wandelt; Romeel Davé; Glennys R. Farrar; Patrick C. McGuire; David N. Spergel; Paul J. Steinhardt

Spergel and Steinhardt have recently proposed the concept of dark matter with strong self-interactions as a means to address numerous discrepancies between observations of dark matter halos on subgalactic scales and the predictions of the standard collisionless dark matter picture. We review the motivations for this scenario and discuss some recent, successful numerical tests. We also discuss the possibility that the dark matter interacts strongly with ordinary baryonic matter, as well as with itself. We present a new analysis of the experimental constraints and re-evaluate the allowed range of cross-section and mass.


IEEE Transactions on Geoscience and Remote Sensing | 2008

MRO/CRISM Retrieval of Surface Lambert Albedos for Multispectral Mapping of Mars With DISORT-Based Radiative Transfer Modeling: Phase 1—Using Historical Climatology for Temperatures, Aerosol Optical Depths, and Atmospheric Pressures

Patrick C. McGuire; M. J. Wolff; M. D. Smith; Raymond E. Arvidson; Scott L. Murchie; R. T. Clancy; Ted L. Roush; Selby C. Cull; Kimberly Ann Lichtenberg; Sandra Margot Wiseman; Robert O. Green; Terry Z. Martin; Ralph E. Milliken; Peter J. Cavender; David Carl Humm; F. P. Seelos; Kimberly D. Seelos; Howard W. Taylor; B. L. Ehlmann; John F. Mustard; Shannon Pelkey; Timothy N. Titus; C. D. Hash; Erick R. Malaret

We discuss the DISORT-based radiative transfer pipeline (ldquoCRISM_LambertAlbrdquo) for atmospheric and thermal correction of MRO/CRISM data acquired in multispectral mapping mode (~200 m/pixel, 72 spectral channels). Currently, in this phase-one version of the system, we use aerosol optical depths, surface temperatures, and lower atmospheric temperatures, all from climatology derived from Mars Global Surveyor Thermal Emission Spectrometer (MGS-TES) data and from surface altimetry derived from MGS Mars Orbiter Laser Altimeter (MOLA). The DISORT-based model takes the dust and ice aerosol optical depths (scaled to the CRISM wavelength range), the surface pressures (computed from MOLA altimetry, MGS-TES lower atmospheric thermometry, and Viking-based pressure climatology), the surface temperatures, the reconstructed instrumental photometric angles, and the measured I/F spectrum as inputs, and then a Lambertian albedo spectrum is computed as the output. The Lambertian albedo spectrum is valuable geologically because it allows the mineralogical composition to be estimated. Here, I/F is defined as the ratio of the radiance measured by CRISM to the solar irradiance at Mars divided by pi; if there was no martian atmosphere, I/F divided by the cosine of the incidence angle would be equal to the Lambert albedo for a Lambertian surface. After discussing the capabilities and limitations of the pipeline software system, we demonstrate its application on several multispectral data cubes-particularly, the outer reaches of the northern ice cap of Mars, the Tyrrhena Terra area that is northeast of the Hellas basin, and an area near the landing site for the Phoenix mission in the northern plains. For the icy spectra near the northern polar cap, aerosols need to be included in order to properly correct for the CO2 absorption in the H2O ice bands at wavelengths near 2.0 mum. In future phases of software development, we intend to use CRISM data directly in order to retrieve the spatiotemporal maps of aerosol optical depths, surface pressure, and surface temperature. This will allow a second level of refinement in the atmospheric and thermal correction of CRISM multispectral data.


Physical Review D | 2007

Constraints on the interactions between dark matter and baryons from the x-ray quantum calorimetry experiment

Adrienne L. Erickcek; Paul J. Steinhardt; Dan McCammon; Patrick C. McGuire

Although the rocket-based x-ray quantum calorimetry (XQC) experiment was designed for x-ray spectroscopy, the minimal shielding of its calorimeters, its low atmospheric overburden, and its low-threshold detectors make it among the most sensitive instruments for detecting or constraining strong interactions between dark matter particles and baryons. We use Monte Carlo simulations to obtain the precise limits the XQC experiment places on spin-independent interactions between dark matter and baryons, improving upon earlier analytical estimates. We find that the XQC experiment rules out a wide range of nucleon-scattering cross sections centered around 1 b for dark matter particles with masses between 0.01 and 10^5 GeV. Our analysis also provides new constraints on cases where only a fraction of the dark matter strongly interacts with baryons.


Reviews in The Neurosciences | 2003

Neural Architectures for Robot Intelligence

Helge Ritter; Jochen J. Steil; Claudia Nölker; Frank Röthling; Patrick C. McGuire

We argue that direct experimental approaches to elucidate the architecture of higher brains may benefit from insights gained from exploring the possibilities and limits of artificial control architectures for robot systems. We present some of our recent work that has been motivated by that view and that is centered around the study of various aspects of hand actions since these are intimately linked with many higher cognitive abilities. As examples, we report on the development of a modular system for the recognition of continuous hand postures based on neural nets, the use of vision and tactile sensing for guiding prehensile movements of a multifingered hand, and the recognition and use of hand gestures for robot teaching. Regarding the issue of learning, we propose to view real-world learning from the perspective of data-mining and to focus more strongly on the imitation of observed actions instead of purely reinforcement-based exploration. As a concrete example of such an effort we report on the status of an ongoing project in our laboratory in which a robot equipped with an attention system with a neurally inspired architecture is taught actions by using hand gestures in conjunction with speech commands. We point out some of the lessons learnt from this system, and discuss how systems of this kind can contribute to the study of issues at the junction between natural and artificial cognitive systems.


Astronomical Telescopes and Instrumentation | 1998

Simultaneous measurements of sodium column density and laser guide star brightness

Jian Ge; Bruce Paul Jacobsen; James Roger P. Angel; Patrick C. McGuire; Tom Roberts; Brian A. McLeod; Michael Lloyd-Hart

We report on new results of simultaneous measurements of sodium layer column density and the absolute return flux from laser guide stars created by a monochromatic approximately 1 W CW laser, tuned to the peak of the sodium D2 hyperfine structure. The return was measured at the MMT while the sodium abundance was measured at the CFA 60 inch telescope, about 1 km away, with the Advanced Fiber Optic Echelle spectrograph. The laser frequency stability, which can greatly affect the return flux, was monitored at the same time in order to improve the measurement accuracy. After the correction for laser frequency jitter and atmospheric transmission, the absolute flux return above the atmosphere for circularly polarized light is 1.2 X 106 photons s-1 m-2 per watt launched above the atmosphere, per unit column density, which we taken as our measured mean over the year of N(Na) equals 3.7 X 109 cm-2 at Tucson. The solidification of a final well-determined relationship between the sodium laser guide star brightness and sodium layer column density is pivotal in the design of the next generation laser guide star adaptive optics systems. We also report the measurements and analysis of the relationship between the projected beam waist of the sodium laser and the resultant spot size on the sodium layer under typical atmospheric conditions. Since wavefront measured error is proportional to spot size, and also to 1/(root) power, minimum spot size is crucial for lowest laser power requirement. By projecting the laser through diffraction limited optics of 0.5 m diameter, roughly 3 r0, we have achieved the smallest artificial beacon yet recorded, about 0.8 arcsec.


The Astrophysical Journal | 2004

Adaptive Optics Nulling Interferometric Constraints on the Mid-Infrared Exozodiacal Dust Emission around Vega

Wilson M. Liu; Philip M. Hinz; William F. Hoffmann; Guido Brusa; F. Wildi; Doug Miller; Michael Lloyd-Hart; Matthew A. Kenworthy; Patrick C. McGuire; James Roger P. Angel

We present the results of mid-infrared nulling interferometric observations of the main-sequence star α Lyr (Vega) using the 6.5 m MMT with its adaptive secondary mirror. From the observations at 10.6 μm, we find that there is no resolved emission from the circumstellar environment (at separations greater than 0.8 AU) above 2.1% (3 σ limit) of the level of the stellar photospheric emission. Thus, we are able to place an upper limit on the density of dust in the inner system of 650 times that of our own solar systems zodiacal cloud. This limit is roughly 2.8 times better than those determined with photometric excess observations such as those by IRAS. Comparison with far-infrared observations by IRAS shows that the density of warm dust in the inner system ( 80%) of the material in the outer system is ice.

Collaboration


Dive into the Patrick C. McGuire's collaboration.

Top Co-Authors

Avatar

Scott L. Murchie

Johns Hopkins University Applied Physics Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Raymond E. Arvidson

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

F. P. Seelos

Johns Hopkins University Applied Physics Laboratory

View shared research outputs
Top Co-Authors

Avatar

Lorenz Wendt

Free University of Berlin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gerhard Neukum

Free University of Berlin

View shared research outputs
Top Co-Authors

Avatar

M. J. Wolff

Space Science Institute

View shared research outputs
Top Co-Authors

Avatar

Sandra Margot Wiseman

Washington University in St. Louis

View shared research outputs
Researchain Logo
Decentralizing Knowledge