Patrick Callier
University of Burgundy
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Patrick Callier.
Nature Genetics | 2011
Loïc de Pontual; Evelyn Yao; Patrick Callier; Laurence Faivre; Valérie Drouin; Sandra Cariou; Arie van Haeringen; David Geneviève; Alice Goldenberg; Myriam Oufadem; Sylvie Manouvrier; Arnold Munnich; Joana A. Vidigal; Michel Vekemans; Stanislas Lyonnet; Alexandra Henrion-Caude; Andrea Ventura; Jeanne Amiel
MicroRNAs (miRNAs) are key regulators of gene expression in animals and plants. Studies in a variety of model organisms show that miRNAs modulate developmental processes. To our knowledge, the only hereditary condition known to be caused by a miRNA is a form of adult-onset non-syndromic deafness, and no miRNA mutation has yet been found to be responsible for any developmental defect in humans. Here we report the identification of germline hemizygous deletions of MIR17HG, encoding the miR-17∼92 polycistronic miRNA cluster, in individuals with microcephaly, short stature and digital abnormalities. We demonstrate that haploinsufficiency of miR-17∼92 is responsible for these developmental abnormalities by showing that mice harboring targeted deletion of the miR-17∼92 cluster phenocopy several key features of the affected humans. These findings identify a regulatory function for miR-17∼92 in growth and skeletal development and represent the first example of an miRNA gene responsible for a syndromic developmental defect in humans.
Journal of Medical Genetics | 2011
Sabina Benko; Christopher T. Gordon; Delphine Mallet; Rajini Sreenivasan; Christel Thauvin-Robinet; Atle Brendehaug; Sophie Thomas; Ove Bruland; Michel David; Marc Nicolino; Audrey Labalme; Damien Sanlaville; Patrick Callier; Valérie Malan; Frédéric Huet; Frédérique Dijoud; Arnold Munnich; Laurence Faivre; Jeanne Amiel; Vincent R. Harley; Gunnar Houge; Yves Morel; Stanislas Lyonnet
Background The early gonad is bipotential and can differentiate into either a testis or an ovary. In XY embryos, the SRY gene triggers testicular differentiation and subsequent male development via its action on a single gene, SOX9. The supporting cell lineage of the bipotential gonad will differentiate as testicular Sertoli cells if SOX9 is expressed and conversely will differentiate as ovarian granulosa cells when SOX9 expression is switched off. Results Through copy number variation mapping this study identified duplications upstream of the SOX9 gene in three families with an isolated 46,XX disorder of sex development (DSD) and an overlapping deletion in one family with two probands with an isolated 46,XY DSD. The region of overlap between these genomic alterations, and previously reported deletions and duplications at the SOX9 locus associated with syndromic and isolated cases of 46,XX and 46,XY DSD, reveal a minimal non-coding 78 kb sex determining region located in a gene desert 517–595 kb upstream of the SOX9 promoter. Conclusions These data indicate that a non-coding regulatory region critical for gonadal SOX9 expression and subsequent normal sex development is located far upstream of the SOX9 promoter. Its copy number variations are the genetic basis of isolated 46,XX and 46,XY DSDs of variable severity (ranging from mild to complete sex reversal). It is proposed that this region contains a gonad specific SOX9 transcriptional enhancer(s), the gain or loss of which results in genomic imbalance sufficient to activate or inactivate SOX9 gonadal expression in a tissue specific manner, switch sex determination, and result in isolated DSD.
Clinical Genetics | 2010
Alice Masurel-Paulet; Joris Andrieux; Patrick Callier; Jean-Marie Cuisset; C Le Caignec; Muriel Holder; Christel Thauvin-Robinet; B Doray; Elisabeth Flori; Mp Alex-Cordier; Mylène Beri; Odile Boute; Bruno Delobel; A Dieux; Louis Vallée; Sylvie Jaillard; Sylvie Odent; Bertrand Isidor; Claire Beneteau; J Vigneron; Frédéric Bilan; Brigitte Gilbert-Dussardier; Christèle Dubourg; Audrey Labalme; C Bidon; A Gautier; P Pernes; Jm Pinoit; Frédéric Huet; Francine Mugneret
Masurel‐Paulet A, Andrieux J, Callier P, Cuisset JM, Le Caignec C, Holder M, Thauvin‐Robinet C, Doray B, Flori E, Alex‐Cordier MP, Beri M, Boute O, Delobel B, Dieux A, Vallee L, Jaillard S, Odent S, Isidor B, Beneteau C, Vigneron J, Bilan F, Gilbert‐Dussardier B, Dubourg C, Labalme A, Gautier A, Pernes P, Bidon C, Pinoit JM, Huet F, Mugneret F, Aral B, Jonveaux P, Sanlaville D, Faivre L. Delineation of 15q13.3 microdeletions.
Nature Genetics | 2011
Katie Snape; Sandra Hanks; Elise Ruark; Patricio Barros-Núñez; Anna Elliott; Anne Murray; Andrew H Lane; Nora Shannon; Patrick Callier; David Chitayat; Jill Clayton-Smith; David Fitzpatrick; David Gisselsson; Sébastien Jacquemont; Keiko Asakura-Hay; Mark Micale; John Tolmie; Peter D. Turnpenny; Michael Wright; Jenny Douglas; Nazneen Rahman
Using exome sequencing and a variant prioritization strategy that focuses on loss-of-function variants, we identified biallelic, loss-of-function CEP57 mutations as a cause of constitutional mosaic aneuploidies. CEP57 is a centrosomal protein and is involved in nucleating and stabilizing microtubules. Our findings indicate that these and/or additional functions of CEP57 are crucial for maintaining correct chromosomal number during cell division.
American Journal of Human Genetics | 2013
Christel Thauvin-Robinet; Martine Auclair; Laurence Duplomb; Martine Caron-Debarle; Magali Avila; Judith St-Onge; Martine Le Merrer; Bernard Le Luyer; Delphine Héron; Michèle Mathieu-Dramard; Pierre Bitoun; Jean-Michel Petit; Sylvie Odent; Jeanne Amiel; Damien Picot; Virginie Carmignac; Julien Thevenon; Patrick Callier; Martine Laville; Yves Reznik; Cédric Fagour; Marie-Laure Nunes; Jacqueline Capeau; Olivier Lascols; Frédéric Huet; Laurence Faivre; Corinne Vigouroux; Jean-Baptiste Rivière
Short stature, hyperextensibility of joints and/or inguinal hernia, ocular depression, Rieger anomaly, and teething delay (SHORT) syndrome is a developmental disorder with an unknown genetic cause and hallmarks that include insulin resistance and lack of subcutaneous fat. We ascertained two unrelated individuals with SHORT syndrome, hypothesized that the observed phenotype was most likely due to de novo mutations in the same gene, and performed whole-exome sequencing in the two probands and their unaffected parents. We then confirmed our initial observations in four other subjects with SHORT syndrome from three families, as well as 14 unrelated subjects presenting with syndromic insulin resistance and/or generalized lipoatrophy associated with dysmorphic features and growth retardation. Overall, we identified in nine affected individuals from eight families de novo or inherited PIK3R1 mutations, including a mutational hotspot (c.1945C>T [p.Arg649Trp]) present in four families. PIK3R1 encodes the p85α, p55α, and p50α regulatory subunits of class IA phosphatidylinositol 3 kinases (PI3Ks), which are known to play a key role in insulin signaling. Functional data from fibroblasts derived from individuals with PIK3R1 mutations showed severe insulin resistance for both proximal and distal PI3K-dependent signaling. Our findings extend the genetic causes of severe insulin-resistance syndromes and provide important information with respect to the function of PIK3R1 in normal development and its role in human diseases, including growth delay, Rieger anomaly and other ocular affections, insulin resistance, diabetes, paucity of fat, and ovarian cysts.
Clinical Genetics | 2016
Julien Thevenon; Yannis Duffourd; Alice Masurel-Paulet; Mathilde Lefebvre; F. Feillet; S. El Chehadeh-Djebbar; Judith St-Onge; A. Steinmetz; Frédéric Huet; M. Chouchane; V. Darmency-Stamboul; Patrick Callier; Christel Thauvin-Robinet; Laurence Faivre; Jean-Baptiste Rivière
The current standard of care for diagnosis of severe intellectual disability (ID) and epileptic encephalopathy (EE) results in a diagnostic yield of ∼50%. Affected individuals nonetheless undergo multiple clinical evaluations and low‐yield laboratory tests often referred to as a ‘diagnostic odyssey’. This study was aimed at assessing the utility of clinical whole‐exome sequencing (WES) in individuals with undiagnosed and severe forms of ID and EE, and the feasibility of its implementation in routine practice by a small regional genetic center. We performed WES in a cohort of 43 unrelated individuals with undiagnosed ID and/or EE. All individuals had undergone multiple clinical evaluations and diagnostic tests over the years, with no definitive diagnosis. Sequencing data analysis and interpretation were carried out at the local molecular genetics laboratory. The diagnostic rate of WES reached 32.5% (14 out of 43 individuals). Genetic diagnosis had a direct impact on clinical management in four families, including a prenatal diagnostic test in one family. Our data emphasize the clinical utility and feasibility of WES in individuals with undiagnosed forms of ID and EE and highlight the necessity of close collaborations between ordering physicians, molecular geneticists, bioinformaticians and researchers for accurate data interpretation.
American Journal of Human Genetics | 2012
Virginie Carmignac; Julien Thevenon; Lesley C. Adès; Bert Callewaert; Sophie Julia; Christel Thauvin-Robinet; Lucie Gueneau; Jean Benoît Courcet; Estelle Lopez; Katherine Holman; Marjolijn Renard; Henri Plauchu; Ghislaine Plessis; Julie De Backer; Anne H. Child; Gavin Arno; Laurence Duplomb; Patrick Callier; Bernard Aral; Pierre Vabres; Nadège Gigot; Eloisa Arbustini; Maurizia Grasso; Peter N. Robinson; Cyril Goizet; Clarisse Baumann; Maja Di Rocco; Jaime Sanchez del Pozo; Frédéric Huet; Guillaume Jondeau
Shprintzen-Goldberg syndrome (SGS) is characterized by severe marfanoid habitus, intellectual disability, camptodactyly, typical facial dysmorphism, and craniosynostosis. Using family-based exome sequencing, we identified a dominantly inherited heterozygous in-frame deletion in exon 1 of SKI. Direct sequencing of SKI further identified one overlapping heterozygous in-frame deletion and ten heterozygous missense mutations affecting recurrent residues in 18 of the 19 individuals screened for SGS; these individuals included one family affected by somatic mosaicism. All mutations were located in a restricted area of exon 1, within the R-SMAD binding domain of SKI. No mutation was found in a cohort of 11 individuals with other marfanoid-craniosynostosis phenotypes. The interaction between SKI and Smad2/3 and Smad 4 regulates TGF-β signaling, and the pattern of anomalies in Ski-deficient mice corresponds to the clinical manifestations of SGS. These findings define SGS as a member of the family of diseases associated with the TGF-β-signaling pathway.
Human Mutation | 2011
J. Demars; Sylvie Rossignol; Irène Netchine; Kai Syin Lee; Mansur Shmela; Laurence Faivre; Jacques Weill; Sylvie Odent; Salah Azzi; Patrick Callier; Josette Lucas; Christèle Dubourg; Joris Andrieux; Yves Le Bouc; Assam El-Osta; Christine Gicquel
The imprinted 11p15 region is organized in two domains, each of them under the control of its own imprinting control region (ICR1 for the IGF2/H19 domain and ICR2 for the KCNQ1OT1/CDKN1C domain). Disruption of 11p15 imprinting results in two fetal growth disorders with opposite phenotypes: the Beckwith–Wiedemann (BWS) and the Silver–Russell (SRS) syndromes. Various 11p15 genetic and epigenetic defects have been demonstrated in BWS and SRS. Among them, isolated DNA methylation defects account for approximately 60% of patients. To investigate whether cryptic copy number variations (CNVs) involving only part of one of the two imprinted domains account for 11p15 isolated DNA methylation defects, we designed a single nucleotide polymorphism array covering the whole 11p15 imprinted region and genotyped 185 SRS or BWS cases with loss or gain of DNA methylation at either ICR1 or ICR2. We describe herein novel small gain and loss CNVs in six BWS or SRS patients, including maternally inherited cis‐duplications involving only part of one of the two imprinted domains. We also show that ICR2 deletions do not account for BWS with ICR2 loss of methylation and that uniparental isodisomy involving only one of the two imprinted domains is not a mechanism for SRS or BWS. Hum Mutat 32:1171–1182, 2011. ©2011 Wiley‐Liss, Inc.
Journal of Medical Genetics | 2012
Jean-Benoît Courcet; Laurence Faivre; Perrine Malzac; Alice Masurel-Paulet; Estelle Lopez; Patrick Callier; Laetitia Lambert; Martine Lemesle; Julien Thevenon; Nadège Gigot; Laurence Duplomb; Clémence Ragon; Nathalie Marle; Anne-Laure Mosca-Boidron; Frédéric Huet; Christophe Philippe; Anne Moncla; Christel Thauvin-Robinet
Background DYRK1A plays different functions during development, with an important role in controlling brain growth through neuronal proliferation and neurogenesis. It is expressed in a gene dosage dependent manner since dyrk1a haploinsufficiency induces a reduced brain size in mice, and DYRK1A overexpression is the candidate gene for intellectual disability (ID) and microcephaly in Down syndrome. We have identified a 69 kb deletion including the 5′ region of the DYRK1A gene in a patient with growth retardation, primary microcephaly, facial dysmorphism, seizures, ataxic gait, absent speech and ID. Because four patients previously reported with intragenic DYRK1A rearrangements or 21q22 microdeletions including only DYRK1A presented with overlapping phenotypes, we hypothesised that DYRK1A mutations could be responsible for syndromic ID with severe microcephaly and epilepsy. Methods The DYRK1A gene was studied by direct sequencing and quantitative PCR in a cohort of 105 patients with ID and at least two symptoms from the Angelman syndrome spectrum (microcephaly < −2.5 SD, ataxic gait, seizures and speech delay). Results We identified a de novo frameshift mutation (c.290_291delCT; p.Ser97Cysfs*98) in a patient with growth retardation, primary severe microcephaly, delayed language, ID, and seizures. Conclusion The identification of a truncating mutation in a patient with ID, severe microcephaly, epilepsy, and growth retardation, combined with its dual function in regulating the neural proliferation/neuronal differentiation, adds DYRK1A to the list of genes responsible for such a phenotype. ID, microcephaly, epilepsy, and language delay are the more specific features associated with DYRK1A abnormalities. DYRK1A studies should be discussed in patients presenting such a phenotype.
Journal of Medical Genetics | 2010
Céline Bonnet; Joris Andrieux; Mylène Béri-Dexheimer; Bruno Leheup; Odile Boute; S Manouvrier; Bruno Delobel; Henri Copin; Aline Receveur; Michèle Mathieu; G Thiriez; C Le Caignec; A David; Mc De Blois; Valérie Malan; Anne Philippe; Valérie Cormier-Daire; Laurence Colleaux; Elisabeth Flori; H Dollfus; V Pelletier; Christel Thauvin-Robinet; Alice Masurel-Paulet; L. Faivre; Marc Tardieu; Nadia Bahi-Buisson; Patrick Callier; Francine Mugneret; Philippe Jonveaux; D. Sanlaville
Background Genome-wide screening of large patient cohorts with mental retardation using microarray-based comparative genomic hybridisation (array-CGH) has recently led to identification several novel microdeletion and microduplication syndromes. Methods Owing to the national array-CGH network funded by the French Ministry of Health, shared information about patients with rare disease helped to define critical intervals and evaluate their gene content, and finally determine the phenotypic consequences of genomic array findings. Results In this study, nine unrelated patients with overlapping de novo interstitial microdeletions involving 4q21 are reported. Several major features are common to all patients, including neonatal muscular hypotonia, severe psychomotor retardation, marked progressive growth restriction, distinctive facial features and absent or severely delayed speech. The boundaries and the sizes of the nine deletions are different, but an overlapping region of 1.37 Mb is defined; this region contains five RefSeq genes: PRKG2, RASGEF1B, HNRNPD, HNRPDL and ENOPH1. Discussion Adding new individuals with similar clinical features and 4q21 deletion allowed us to reduce the critical genomic region encompassing two genes, PRKG2 and RASGEF1B. PRKG2 encodes cGMP-dependent protein kinase type II, which is expressed in brain and in cartilage. Information from genetically modified animal models is pertinent to the clinical phenotype. RASGEF1B is a guanine nucleotide exchange factor for Ras family proteins, and several members have been reported as key regulators of actin and microtubule dynamics during both dendrite and spine structural plasticity. Conclusion Clinical and molecular delineation of 4q21 deletion supports a novel microdeletion syndrome and suggests a major contribution of PRKG2 and RASGEF1B haploinsufficiency to the core phenotype.