Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Julien Thevenon is active.

Publication


Featured researches published by Julien Thevenon.


Journal of Medical Genetics | 2014

Efficient strategy for the molecular diagnosis of intellectual disability using targeted high-throughput sequencing

Claire Redin; Bénédicte Gérard; Julia Lauer; Yvan Herenger; Jean Muller; Angélique Quartier; Alice Masurel-Paulet; Marjolaine Willems; Gaetan Lesca; Salima El-Chehadeh; Stéphanie Le Gras; Serge Vicaire; Muriel Philipps; Michael Dumas; Véronique Geoffroy; Claire Feger; Nicolas Haumesser; Yves Alembik; Magalie Barth; Dominique Bonneau; Estelle Colin; Hélène Dollfus; Bérénice Doray; Marie-Ange Delrue; Valérie Drouin-Garraud; Elisabeth Flori; Mélanie Fradin; Christine Francannet; Alice Goldenberg; Serge Lumbroso

Background Intellectual disability (ID) is characterised by an extreme genetic heterogeneity. Several hundred genes have been associated to monogenic forms of ID, considerably complicating molecular diagnostics. Trio-exome sequencing was recently proposed as a diagnostic approach, yet remains costly for a general implementation. Methods We report the alternative strategy of targeted high-throughput sequencing of 217 genes in which mutations had been reported in patients with ID or autism as the major clinical concern. We analysed 106 patients with ID of unknown aetiology following array-CGH analysis and other genetic investigations. Ninety per cent of these patients were males, and 75% sporadic cases. Results We identified 26 causative mutations: 16 in X-linked genes (ATRX, CUL4B, DMD, FMR1, HCFC1, IL1RAPL1, IQSEC2, KDM5C, MAOA, MECP2, SLC9A6, SLC16A2, PHF8) and 10 de novo in autosomal-dominant genes (DYRK1A, GRIN1, MED13L, TCF4, RAI1, SHANK3, SLC2A1, SYNGAP1). We also detected four possibly causative mutations (eg, in NLGN3) requiring further investigations. We present detailed reasoning for assigning causality for each mutation, and associated patients’ clinical information. Some genes were hit more than once in our cohort, suggesting they correspond to more frequent ID-associated conditions (KDM5C, MECP2, DYRK1A, TCF4). We highlight some unexpected genotype to phenotype correlations, with causative mutations being identified in genes associated to defined syndromes in patients deviating from the classic phenotype (DMD, TCF4, MECP2). We also bring additional supportive (HCFC1, MED13L) or unsupportive (SHROOM4, SRPX2) evidences for the implication of previous candidate genes or mutations in cognitive disorders. Conclusions With a diagnostic yield of 25% targeted sequencing appears relevant as a first intention test for the diagnosis of ID, but importantly will also contribute to a better understanding regarding the specific contribution of the many genes implicated in ID and autism.


American Journal of Human Genetics | 2013

PIK3R1 Mutations Cause Syndromic Insulin Resistance with Lipoatrophy

Christel Thauvin-Robinet; Martine Auclair; Laurence Duplomb; Martine Caron-Debarle; Magali Avila; Judith St-Onge; Martine Le Merrer; Bernard Le Luyer; Delphine Héron; Michèle Mathieu-Dramard; Pierre Bitoun; Jean-Michel Petit; Sylvie Odent; Jeanne Amiel; Damien Picot; Virginie Carmignac; Julien Thevenon; Patrick Callier; Martine Laville; Yves Reznik; Cédric Fagour; Marie-Laure Nunes; Jacqueline Capeau; Olivier Lascols; Frédéric Huet; Laurence Faivre; Corinne Vigouroux; Jean-Baptiste Rivière

Short stature, hyperextensibility of joints and/or inguinal hernia, ocular depression, Rieger anomaly, and teething delay (SHORT) syndrome is a developmental disorder with an unknown genetic cause and hallmarks that include insulin resistance and lack of subcutaneous fat. We ascertained two unrelated individuals with SHORT syndrome, hypothesized that the observed phenotype was most likely due to de novo mutations in the same gene, and performed whole-exome sequencing in the two probands and their unaffected parents. We then confirmed our initial observations in four other subjects with SHORT syndrome from three families, as well as 14 unrelated subjects presenting with syndromic insulin resistance and/or generalized lipoatrophy associated with dysmorphic features and growth retardation. Overall, we identified in nine affected individuals from eight families de novo or inherited PIK3R1 mutations, including a mutational hotspot (c.1945C>T [p.Arg649Trp]) present in four families. PIK3R1 encodes the p85α, p55α, and p50α regulatory subunits of class IA phosphatidylinositol 3 kinases (PI3Ks), which are known to play a key role in insulin signaling. Functional data from fibroblasts derived from individuals with PIK3R1 mutations showed severe insulin resistance for both proximal and distal PI3K-dependent signaling. Our findings extend the genetic causes of severe insulin-resistance syndromes and provide important information with respect to the function of PIK3R1 in normal development and its role in human diseases, including growth delay, Rieger anomaly and other ocular affections, insulin resistance, diabetes, paucity of fat, and ovarian cysts.


American Journal of Human Genetics | 2014

Mutations in SLC13A5 Cause Autosomal-Recessive Epileptic Encephalopathy with Seizure Onset in the First Days of Life

Julien Thevenon; Mathieu Milh; François Feillet; Judith St-Onge; Yannis Duffourd; Clara Jugé; Agathe Roubertie; Delphine Héron; Cyril Mignot; Emmanuel Raffo; Bertrand Isidor; Sandra Wahlen; Damien Sanlaville; Nathalie Villeneuve; Véronique Darmency-Stamboul; Annick Toutain; Mathilde Lefebvre; Mondher Chouchane; Frédéric Huet; Arnaud Lafon; Anne de Saint Martin; Gaetan Lesca; Salima El Chehadeh; Christel Thauvin-Robinet; Alice Masurel-Paulet; Sylvie Odent; Laurent Villard; Christophe Philippe; Laurence Faivre; Jean-Baptiste Rivière

Epileptic encephalopathy (EE) refers to a clinically and genetically heterogeneous group of severe disorders characterized by seizures, abnormal interictal electro-encephalogram, psychomotor delay, and/or cognitive deterioration. We ascertained two multiplex families (including one consanguineous family) consistent with an autosomal-recessive inheritance pattern of EE. All seven affected individuals developed subclinical seizures as early as the first day of life, severe epileptic disease, and profound developmental delay with no facial dysmorphism. Given the similarity in clinical presentation in the two families, we hypothesized that the observed phenotype was due to mutations in the same gene, and we performed exome sequencing in three affected individuals. Analysis of rare variants in genes consistent with an autosomal-recessive mode of inheritance led to identification of mutations in SLC13A5, which encodes the cytoplasmic sodium-dependent citrate carrier, notably expressed in neurons. Disease association was confirmed by cosegregation analysis in additional family members. Screening of 68 additional unrelated individuals with early-onset epileptic encephalopathy for SLC13A5 mutations led to identification of one additional subject with compound heterozygous mutations of SLC13A5 and a similar clinical presentation as the index subjects. Mutations affected key residues for sodium binding, which is critical for citrate transport. These findings underline the value of careful clinical characterization for genetic investigations in highly heterogeneous conditions such as EE and further highlight the role of citrate metabolism in epilepsy.


Clinical Genetics | 2016

Diagnostic odyssey in severe neurodevelopmental disorders: toward clinical whole‐exome sequencing as a first‐line diagnostic test

Julien Thevenon; Yannis Duffourd; Alice Masurel-Paulet; Mathilde Lefebvre; F. Feillet; S. El Chehadeh-Djebbar; Judith St-Onge; A. Steinmetz; Frédéric Huet; M. Chouchane; V. Darmency-Stamboul; Patrick Callier; Christel Thauvin-Robinet; Laurence Faivre; Jean-Baptiste Rivière

The current standard of care for diagnosis of severe intellectual disability (ID) and epileptic encephalopathy (EE) results in a diagnostic yield of ∼50%. Affected individuals nonetheless undergo multiple clinical evaluations and low‐yield laboratory tests often referred to as a ‘diagnostic odyssey’. This study was aimed at assessing the utility of clinical whole‐exome sequencing (WES) in individuals with undiagnosed and severe forms of ID and EE, and the feasibility of its implementation in routine practice by a small regional genetic center. We performed WES in a cohort of 43 unrelated individuals with undiagnosed ID and/or EE. All individuals had undergone multiple clinical evaluations and diagnostic tests over the years, with no definitive diagnosis. Sequencing data analysis and interpretation were carried out at the local molecular genetics laboratory. The diagnostic rate of WES reached 32.5% (14 out of 43 individuals). Genetic diagnosis had a direct impact on clinical management in four families, including a prenatal diagnostic test in one family. Our data emphasize the clinical utility and feasibility of WES in individuals with undiagnosed forms of ID and EE and highlight the necessity of close collaborations between ordering physicians, molecular geneticists, bioinformaticians and researchers for accurate data interpretation.


Nature Genetics | 2014

The oral-facial-digital syndrome gene C2CD3 encodes a positive regulator of centriole elongation

Christel Thauvin-Robinet; Jaclyn S Lee; Estelle Lopez; Vicente Herranz-Pérez; Toshinobu Shida; Brunella Franco; Laurence Jego; Fan Ye; Laurent Pasquier; Philippe Loget; Nadège Gigot; Bernard Aral; Carla A. M. Lopes; Judith St-Onge; Ange-Line Bruel; Julien Thevenon; Susana González-Granero; Caroline Alby; Arnold Munnich; Michel Vekemans; Frédéric Huet; Andrew M. Fry; Sophie Saunier; Jean-Baptiste Rivière; Tania Attié-Bitach; Jose Manuel Garcia-Verdugo; Laurence Faivre; André Mégarbané; Maxence V. Nachury

Centrioles are microtubule-based, barrel-shaped structures that initiate the assembly of centrosomes and cilia. How centriole length is precisely set remains elusive. The microcephaly protein CPAP (also known as MCPH6) promotes procentriole growth, whereas the oral-facial-digital (OFD) syndrome protein OFD1 represses centriole elongation. Here we uncover a new subtype of OFD with severe microcephaly and cerebral malformations and identify distinct mutations in two affected families in the evolutionarily conserved C2CD3 gene. Concordant with the clinical overlap, C2CD3 colocalizes with OFD1 at the distal end of centrioles, and C2CD3 physically associates with OFD1. However, whereas OFD1 deletion leads to centriole hyperelongation, loss of C2CD3 results in short centrioles without subdistal and distal appendages. Because C2CD3 overexpression triggers centriole hyperelongation and OFD1 antagonizes this activity, we propose that C2CD3 directly promotes centriole elongation and that OFD1 acts as a negative regulator of C2CD3. Our results identify regulation of centriole length as an emerging pathogenic mechanism in ciliopathies.


American Journal of Human Genetics | 2012

In-Frame Mutations in Exon 1 of SKI Cause Dominant Shprintzen-Goldberg Syndrome

Virginie Carmignac; Julien Thevenon; Lesley C. Adès; Bert Callewaert; Sophie Julia; Christel Thauvin-Robinet; Lucie Gueneau; Jean Benoît Courcet; Estelle Lopez; Katherine Holman; Marjolijn Renard; Henri Plauchu; Ghislaine Plessis; Julie De Backer; Anne H. Child; Gavin Arno; Laurence Duplomb; Patrick Callier; Bernard Aral; Pierre Vabres; Nadège Gigot; Eloisa Arbustini; Maurizia Grasso; Peter N. Robinson; Cyril Goizet; Clarisse Baumann; Maja Di Rocco; Jaime Sanchez del Pozo; Frédéric Huet; Guillaume Jondeau

Shprintzen-Goldberg syndrome (SGS) is characterized by severe marfanoid habitus, intellectual disability, camptodactyly, typical facial dysmorphism, and craniosynostosis. Using family-based exome sequencing, we identified a dominantly inherited heterozygous in-frame deletion in exon 1 of SKI. Direct sequencing of SKI further identified one overlapping heterozygous in-frame deletion and ten heterozygous missense mutations affecting recurrent residues in 18 of the 19 individuals screened for SGS; these individuals included one family affected by somatic mosaicism. All mutations were located in a restricted area of exon 1, within the R-SMAD binding domain of SKI. No mutation was found in a cohort of 11 individuals with other marfanoid-craniosynostosis phenotypes. The interaction between SKI and Smad2/3 and Smad 4 regulates TGF-β signaling, and the pattern of anomalies in Ski-deficient mice corresponds to the clinical manifestations of SGS. These findings define SGS as a member of the family of diseases associated with the TGF-β-signaling pathway.


Journal of Medical Genetics | 2012

The DYRK1A gene is a cause of syndromic intellectual disability with severe microcephaly and epilepsy

Jean-Benoît Courcet; Laurence Faivre; Perrine Malzac; Alice Masurel-Paulet; Estelle Lopez; Patrick Callier; Laetitia Lambert; Martine Lemesle; Julien Thevenon; Nadège Gigot; Laurence Duplomb; Clémence Ragon; Nathalie Marle; Anne-Laure Mosca-Boidron; Frédéric Huet; Christophe Philippe; Anne Moncla; Christel Thauvin-Robinet

Background DYRK1A plays different functions during development, with an important role in controlling brain growth through neuronal proliferation and neurogenesis. It is expressed in a gene dosage dependent manner since dyrk1a haploinsufficiency induces a reduced brain size in mice, and DYRK1A overexpression is the candidate gene for intellectual disability (ID) and microcephaly in Down syndrome. We have identified a 69 kb deletion including the 5′ region of the DYRK1A gene in a patient with growth retardation, primary microcephaly, facial dysmorphism, seizures, ataxic gait, absent speech and ID. Because four patients previously reported with intragenic DYRK1A rearrangements or 21q22 microdeletions including only DYRK1A presented with overlapping phenotypes, we hypothesised that DYRK1A mutations could be responsible for syndromic ID with severe microcephaly and epilepsy. Methods The DYRK1A gene was studied by direct sequencing and quantitative PCR in a cohort of 105 patients with ID and at least two symptoms from the Angelman syndrome spectrum (microcephaly < −2.5 SD, ataxic gait, seizures and speech delay). Results We identified a de novo frameshift mutation (c.290_291delCT; p.Ser97Cysfs*98) in a patient with growth retardation, primary severe microcephaly, delayed language, ID, and seizures. Conclusion The identification of a truncating mutation in a patient with ID, severe microcephaly, epilepsy, and growth retardation, combined with its dual function in regulating the neural proliferation/neuronal differentiation, adds DYRK1A to the list of genes responsible for such a phenotype. ID, microcephaly, epilepsy, and language delay are the more specific features associated with DYRK1A abnormalities. DYRK1A studies should be discussed in patients presenting such a phenotype.


Human Genetics | 2014

C5orf42 is the major gene responsible for OFD syndrome type VI

Estelle Lopez; Christel Thauvin-Robinet; Bruno Reversade; Nadia El Khartoufi; Louise Devisme; Muriel Holder; Hélène Ansart-Franquet; Magali Avila; Didier Lacombe; Pascale Kleinfinger; Irahara Kaori; Jun-ichi Takanashi; Martine Le Merrer; Jelena Martinovic; Catherine Noël; Mohammad Shboul; Lena Ho; Yeliz Guven; Ferechte Razavi; Lydie Burglen; Nadège Gigot; Véronique Darmency-Stamboul; Julien Thevenon; Bernard Aral; Hülya Kayserili; Frédéric Huet; Stanislas Lyonnet; Cédric Le Caignec; Brunella Franco; Jean-Baptiste Rivière

Oral-facial-digital syndrome type VI (OFD VI) is a recessive ciliopathy defined by two diagnostic criteria: molar tooth sign (MTS) and one or more of the following: (1) tongue hamartoma (s) and/or additional frenula and/or upper lip notch; (2) mesoaxial polydactyly of one or more hands or feet; (3) hypothalamic hamartoma. Because of the MTS, OFD VI belongs to the “Joubert syndrome related disorders”. Its genetic aetiology remains largely unknown although mutations in the TMEM216 gene, responsible for Joubert (JBS2) and Meckel-Gruber (MKS2) syndromes, have been reported in two OFD VI patients. To explore the molecular cause(s) of OFD VI syndrome, we used an exome sequencing strategy in six unrelated families followed by Sanger sequencing. We identified a total of 14 novel mutations in the C5orf42 gene in 9/11 families with positive OFD VI diagnostic criteria including a severe fetal case with microphthalmia, cerebellar hypoplasia, corpus callosum agenesis, polydactyly and skeletal dysplasia. C5orf42 mutations have already been reported in Joubert syndrome confirming that OFD VI and JBS are allelic disorders, thus enhancing our knowledge of the complex, highly heterogeneous nature of ciliopathies.


European Journal of Human Genetics | 2013

12p13.33 microdeletion including ELKS/ERC1, a new locus associated with childhood apraxia of speech.

Julien Thevenon; Patrick Callier; Joris Andrieux; Bruno Delobel; Albert David; Sylvie Sukno; Delphine Minot; Laure Mosca Anne; Nathalie Marle; Damien Sanlaville; Marlène Bonnet; Alice Masurel-Paulet; Fabienne Levy; Lorraine Gaunt; Sandra A. Farrell; Cédric Le Caignec; Annick Toutain; Virginie Carmignac; Francine Mugneret; Jill Clayton-Smith; Christel Thauvin-Robinet; Laurence Faivre

Speech sound disorders are heterogeneous conditions, and sporadic and familial cases have been described. However, monogenic inheritance explains only a small proportion of such disorders, in particular in cases with childhood apraxia of speech (CAS). Deletions of <5 Mb involving the 12p13.33 locus is one of the least commonly deleted subtelomeric regions. Only four patients have been reported with such a deletion diagnosed with fluorescence in situ hybridisation telomere analysis or array CGH. To further delineate this rare microdeletional syndrome, a French collaboration together with a search in the Decipher database allowed us to gather nine new patients with a 12p13.33 subtelomeric or interstitial rearrangement identified by array CGH. Speech delay was found in all patients, which could be defined as CAS when patients had been evaluated by a speech therapist (5/9 patients). Intellectual deficiency was found in 5/9 patients only, and often associated with psychiatric manifestations of various severity. Two such deletions were inherited from an apparently healthy parent, but reevaluation revealed abnormal speech production at least in childhood, suggesting variable expressivity. The ELKS/ERC1 gene, which encodes for a synaptic factor, is found in the smallest region of overlap. These results reinforce the hypothesis that deletions of the 12p13.33 locus may be responsible for variable phenotypes including CAS associated with neurobehavioural troubles and that the presence of CAS justifies a genetic work-up.


American Journal of Human Genetics | 2016

Disruption of POGZ Is Associated with Intellectual Disability and Autism Spectrum Disorders

Holly A.F. Stessman; Marjolein H. Willemsen; Michaela Fenckova; Osnat Penn; Alexander Hoischen; Bo Xiong; Tianyun Wang; Kendra Hoekzema; Laura Vives; Ida Vogel; Han G. Brunner; Ineke van der Burgt; Charlotte W. Ockeloen; Janneke H M Schuurs-Hoeijmakers; Jolien S. Klein Wassink-Ruiter; Connie Stumpel; Servi J.C. Stevens; Hans S.H. Vles; Carlo M. Marcelis; Hans van Bokhoven; Vincent Cantagrel; Laurence Colleaux; Michael Nicouleau; Stanislas Lyonnet; Raphael Bernier; Jennifer Gerdts; Bradley P. Coe; Corrado Romano; Antonino Alberti; Lucia Grillo

Intellectual disability (ID) and autism spectrum disorders (ASD) are genetically heterogeneous, and a significant number of genes have been associated with both conditions. A few mutations in POGZ have been reported in recent exome studies; however, these studies do not provide detailed clinical information. We collected the clinical and molecular data of 25 individuals with disruptive mutations in POGZ by diagnostic whole-exome, whole-genome, or targeted sequencing of 5,223 individuals with neurodevelopmental disorders (ID primarily) or by targeted resequencing of this locus in 12,041 individuals with ASD and/or ID. The rarity of disruptive mutations among unaffected individuals (2/49,401) highlights the significance (p = 4.19 × 10(-13); odds ratio = 35.8) and penetrance (65.9%) of this genetic subtype with respect to ASD and ID. By studying the entire cohort, we defined common phenotypic features of POGZ individuals, including variable levels of developmental delay (DD) and more severe speech and language delay in comparison to the severity of motor delay and coordination issues. We also identified significant associations with vision problems, microcephaly, hyperactivity, a tendency to obesity, and feeding difficulties. Some features might be explained by the high expression of POGZ, particularly in the cerebellum and pituitary, early in fetal brain development. We conducted parallel studies in Drosophila by inducing conditional knockdown of the POGZ ortholog row, further confirming that dosage of POGZ, specifically in neurons, is essential for normal learning in a habituation paradigm. Combined, the data underscore the pathogenicity of loss-of-function mutations in POGZ and define a POGZ-related phenotype enriched in specific features.

Collaboration


Dive into the Julien Thevenon's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul Kuentz

University of Burgundy

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge