Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Patrick D. Wolf is active.

Publication


Featured researches published by Patrick D. Wolf.


Circulation | 1987

Improved defibrillation thresholds with large contoured epicardial electrodes and biphasic waveforms.

E. G. Dixon; A.S.L. Tang; Patrick D. Wolf; J T Meador; M J Fine; R V Calfee; Raymond E. Ideker

A reduction in the shock strength required for defibrillation would allow use of a smaller automatic implantable cardioverter-defibrillator and would reduce the possibility of myocardial damage by the shock. Most internal defibrillation electrodes require 5 to 25 J for successful defibrillation in human beings and in dogs. In an attempt to lower the shock strength needed for defibrillation, we designed two large titanium defibrillation patch electrodes that were contoured to fit over the right and left ventricles of the dog heart, covering areas of approximately 33 and 39 cm2, respectively. In six anesthetized open-chest dogs, the electrodes were secured directly to the epicardium and ventricular fibrillation was induced by 60 Hz alternating current. Truncated exponential monophasic and biphasic shocks were given 10 sec later and defibrillation thresholds (DFTs) were determined. The DFT was 159 +/- 48 V, 3.2 +/- 1.9 J (mean +/- SD) for 10 msec monophasic shocks and 106 +/- 22 V, 1.3 +/- 0.4 J, for biphasic shocks with both phase durations equal to 5 msec (5-5 msec). The experiment was repeated in another six dogs in which the electrodes were secured to the pericardium. The mean DFT was not significantly higher than that for the electrodes on the epicardium: 165 +/- 27 V, 3.1 +/- 1.2 J for 10 msec monophasic shocks and 116 +/- 19 V, 1.6 +/- 0.5 J for 5-5 msec biphasic shocks. Low DFTs were also obtained with biphasic shocks in which the duration of the first phase was longer than that of the second.(ABSTRACT TRUNCATED AT 250 WORDS)


Journal of Clinical Investigation | 1986

Activation during ventricular defibrillation in open-chest dogs. Evidence of complete cessation and regeneration of ventricular fibrillation after unsuccessful shocks.

Peng-Sheng Chen; N. Shibata; E. G. Dixon; Patrick D. Wolf; N. D. Danieley; M. B. Sweeney; W.M. Smith; Raymond E. Ideker

To test the hypothesis that a defibrillation shock is unsuccessful because it fails to annihilate activation fronts within a critical mass of myocardium, we recorded epicardial and transmural activation in 11 open-chest dogs during electrically induced ventricular fibrillation (VF). Shocks of 1-30 J were delivered through defibrillation electrodes on the left ventricular apex and right atrium. Simultaneous recordings were made from septal, intramural, and epicardial electrodes in various combinations. Immediately after all 104 unsuccessful and 116 successful defibrillation shocks, an isoelectric interval much longer than that observed during preshock VF occurred. During this time no epicardial, septal, or intramural activations were observed. This isoelectric window averaged 64 +/- 22 ms after unsuccessful defibrillation and 339 +/- 292 ms after successful defibrillation (P less than 0.02). After the isoelectric window of unsuccessful shocks, earliest activation was recorded from the base of the ventricles, which was the area farthest from the apical defibrillation electrode. Activation was synchronized for one or two cycles following unsuccessful shocks, after which VF regenerated. Thus, after both successful and unsuccessful defibrillation with epicardial shocks of greater than or equal to 1 J, an isoelectric window occurs during which no activation fronts are present; the postshock isoelectric window is shorter for unsuccessful than for successful defibrillation; unsuccessful shocks transiently synchronize activation before fibrillation regenerates; activation leading to the regeneration of VF after the isoelectric window for unsuccessful shocks originates in areas away from the defibrillation electrodes. The isoelectric window does not support the hypothesis that defibrillation fails solely because activation fronts are not halted within a critical mass of myocardium. Rather, unsuccessful epicardial shocks of greater than or equal to 1 J halt all activation fronts after which VF regenerates.


Circulation Research | 1993

Epicardial mapping of ventricular defibrillation with monophasic and biphasic shocks in dogs

Xiaohong Zhou; James P. Daubert; Patrick D. Wolf; W.M. Smith; Raymond E. Ideker

To study the mechanism of defibrillation and the reason for the increased defibrillation efficacy of biphasic waveforms, the potential gradient in a 32 x 30-mm region of the right ventricle in 15 dogs was progressively lowered in four steps while a strong potential gradient field was maintained throughout the rest of the ventricular myocardium. The volume of right ventricle beneath the plaque was 10 +/- 2% of the total ventricular mass. A 10-msec monophasic (eight dogs) or 5/5-msec biphasic (seven dogs) truncated exponential shock 30% above the defibrillation threshold voltage was given via electrodes on the left ventricular apex and right atrium to create the strong potential gradient field. Simultaneously, a weaker shock with the same waveform but opposite polarity was given via mesh electrodes on either side of the small right ventricular region to cancel part of the potential difference in the region and to create one of the four levels of potential gradient fields. Shock potentials and activations were recorded from 117 epicardial electrodes in the small region, and in one dog global epicardial activations and potentials were recorded from a sock containing 72 electrodes. Each gradient field was tested 10 times for successful defibrillation after 10 seconds of electrically induced fibrillation. For both monophasic and biphasic shocks, the percentage of successful defibrillation attempts decreased (p < 0.05) as the potential gradient decreased in the small region. Defibrillation was successful approximately 80% of the time for a mean +/- SD potential gradient of 5.4 +/- 0.8 V/cm for monophasic shocks and 2.7 +/- 0.3 V/cm for biphasic shocks (p < 0.05). No postshock activation fronts arose from the small region for eight waveform when the gradient was more than 5 V/cm. For both waveforms, the postshock activation fronts after the shocks were markedly different from those just before the shock and exhibited either a focal origin or unidirectional conduction.(ABSTRACT TRUNCATED AT 400 WORDS)


IEEE Transactions on Biomedical Engineering | 2004

Evaluation of spike-detection algorithms fora brain-machine interface application

Iyad Obeid; Patrick D. Wolf

Real time spike detection is an important requirement for developing brain machine interfaces (BMIs). We examined three classes of spike-detection algorithms to determine which is best suited for a wireless BMI with a limited transmission bandwidth and computational capabilities. The algorithms were analyzed by tabulating true and false detections when applied to a set of realistic artificial neural signals with known spike times and varying signal to noise ratios. A design-specific cost function was developed to score the relative merits of each detector; correct detections increased the score, while false detections and computational burden reduced it. Test signals both with and without overlapping action potentials were considered. We also investigated the utility of rejecting spikes that violate a minimum refractory period by occurring within a fixed time window after the preceding threshold crossing. Our results indicate that the cost-function scores for the absolute value operator were comparable to those for more elaborate nonlinear energy operator based detectors. The absolute value operator scores were enhanced when the refractory period check was used. Matched-filter-based detectors scored poorly due to their relatively large computational requirements that would be difficult to implement in a real-time system.


Circulation | 1990

Strength-duration and probability of success curves for defibrillation with biphasic waveforms.

S. A. Feeser; Anthony S. L. Tang; Katherine M. Kavanagh; Dennis L. Rollins; W.M. Smith; Patrick D. Wolf; Raymond E. Ideker

Certain biphasic waveforms require less energy to defibrillate than do monophasic pulses of equal duration, although the mechanisms of this increased effectiveness remain unclear. This study used strength-duration and percent success curves for defibrillation with monophasic and biphasic truncated exponential waveforms to explore these mechanisms. In part 1, defibrillation thresholds were determined for both high- and low-tilt waveforms. The monophasic pulses tested ranged in duration from 1.0 to 20.0 msec, and the biphasic waveforms had first phases of either 3.5 or 7.0 msec and second phases ranging from 1.0 to 20.0 msec. In part 2, defibrillation percent success curves were constructed for 6.0 msec/6.0 msec biphasic waveforms with a constant phase-one amplitude and with phase-two amplitudes of approximately 21%, 62%, 94%, and 141% of phase one. This study shows that if the first phase of a biphasic waveform is held constant and the second phase is increased in either duration or amplitude, defibrillation efficacy first improves, then declines, and then again improves. For pulse durations of at least 14 msec, the second-phase defibrillation threshold voltage of a high-tilt biphasic waveform is higher than that of a monophasic pulse equal in duration to the biphasic second phase (p less than 0.05), indicating that the previously proposed hypothesis of stimulation by the second phase is not the sole mechanism of biphasic defibrillation. These facts indicate the importance of the degree of tilt for the defibrillation efficacy of biphasic waveforms and suggest at least two mechanisms exist for defibrillation with these waveforms, one that is more effective for smaller second phases and another that becomes more effective as the second phase is increased.


Circulation | 1986

The potential gradient field created by epicardial defibrillation electrodes in dogs.

Peng-Sheng Chen; Patrick D. Wolf; F.J. Claydon; E. G. Dixon; H. J. Vidaillet; N. D. Danieley; Theo C. Pilkington; Raymond E. Ideker

Knowledge of the potential gradient field created by defibrillation electrodes is important for the understanding and improvement of defibrillation. To obtain this knowledge by direct measurements, potentials were recorded from 60 epicardial, eight septal, and 36 right ventricular transmural electrodes in six open-chest dogs while 1 to 2 V shocks were given through defibrillation electrodes on the right atrium and left ventricular apex (RA. V) and on the right and left ventricles (RV .LV). The potential gradient field across the ventricles was calculated for these low voltages. Ventricular fibrillation was electrically induced, and ventricular activation patterns were recorded after delivering high-voltage shocks just below the defibrillation threshold. With the low-voltage shocks, the potential gradient field was very uneven, with the highest gradient near the epicardial defibrillation electrodes and the weakest gradient distant from the defibrillation electrodes for both RA. V and RV .LV combinations. The mean ratio of the highest to the lowest measured gradient over the entire ventricular epicardium was 19.4 +/- 8.1 SD for the RA. V combination and 14.4 +/- 3.4 for the RV .LV combination. For both defibrillation electrode combinations, the earliest sites of activation after unsuccessful shocks just below the defibrillation threshold were located in areas where the potential gradient was weak for the low-voltage shocks. We conclude that there is a markedly uneven distribution of potential gradients for epicardial defibrillation electrodes with most of the voltage drop occurring near the electrodes, the potential gradient field is significant because it determines where shocks fail to halt fibrillation, and determination of the potential gradient field should lead to the development of improved electrode locations for defibrillation.


Circulation | 1992

Cardiac potential and potential gradient fields generated by single, combined, and sequential shocks during ventricular defibrillation.

J.M. Wharton; Patrick D. Wolf; W.M. Smith; Peng-Sheng Chen; D. W. Frazier; S. Yabe; N. D. Danieley; Raymond E. Ideker

Background Potential gradient field determination may be a helpful means of describing the effects of defibrillation shocks; however, potential gradient field requirements for defibnrllation with different electrode configurations have not been established. Methods and Results To evaluate the field requirements for defibrillation, potential fields during defibrillation shocks and the following ventricular activations were recorded with 74 epicardial electrodes in 12 open-chest dogs with the use of a computerized mapping system. Shock electrodes (2.64 cm2) were attached to the lateral right atrium (R), lateral left ventricular base (L), and left ventricular apex (V). Four electrode configurations were tested: single shocks of 14-msec duration given to two single anode-single cathode configurations, R:V and L: V, and to one dual anode-single cathode configuration, (R+L):V; and sequential 7-msec shocks separated by 1 msec given to R:V and L:V (R:V → L:V). Defibrillation threshold (DFT) current was significantly lower for R:V → L:V than for the other configurations and markedly higher for L:V. Despite these differences, the minimum potential gradients measured at DEFI were not significantly different (approximately 6–7 V/cm for each electrode configuration). Potential gradient fields generated by the electrode configurations were markedly uneven, with a 15–27-fold change from lowest to highest gradient, with the greatest decrease in gradient occurring near the shock electrodes. Although gradient fields varied with the electrode configuration, all configurations produced weak fields along the right ventricular base. Early sites of epicardial activation after all unsuccessful shocks occurred in areas in which the field was weak; 87% occurred at sites with gradients less than 15 V/cm. Ventricular tachycardia originating in high gradient areas near shock electrodes followed 11 of 67 successful shocks. Conclusions These data suggest that 1) defibrillation fields created by small epicardial electrodes are very uneven; 2) achievement of a certain minimum potential gradient over both ventricles is necessary for ventricular defibrillation; 3) the difference in shock strengths required to achieve this minimum gradient over both ventricles may explain the differences in DIFTs for various electrode configurations; and 4) high gradient areas in the uneven fields can induce ectopic activation after successful shocks.


Circulation Research | 1990

Conduction disturbances caused by high current density electric fields.

S. Yabe; W.M. Smith; James P. Daubert; Patrick D. Wolf; Dennis L. Rollins; Raymond E. Ideker

During internal defibrillation, potential gradients greater than 100 V/cm occur near defibrillation electrodes. Such strong fields may cause deleterious effects, including arrhythmias. This study determined 1) the effects of such strong fields on the propagation of activation and 2) whether these effects were different for monophasic and biphasic shocks. Voltages and potential gradients during the shock, as well as activation sequences before and after the shock, were mapped from 117 epicardial electrodes placed over a 3 x 3-cm area on the right ventricle in six dogs. Pacing at a cycle length of 350 msec was given from a long narrow electrode on the right side of the mapped area to generate parallel activation isochrones. A monophasic shock, 10 msec in duration, or a biphasic shock with both phases 5 msec in duration was delivered 300 msec after the last paced stimulus via a mesh electrode on the left side of the mapped area as the cathode, with the anode on the right atrium. Shocks of 70-850 V were given, and the potential gradient and current density at each recording electrode were calculated from the measured potentials and fiber orientation by using a finite element method. Pacing was resumed 200 msec after the shock, and activation sequences were mapped for up to 5 minutes. Potential gradients ranged from 1 to 189 V/cm with high fields on the left side and low fields on the right side of the mapped area. Where the potential gradient was weak, the first activation sequence after the shock was similar to that before the shock, but activation blocked without conducting into areas where the gradient was greater than 64 +/- 4 (mean +/- SD) V/cm for monophasic and greater than 71 +/- 6 V/cm for biphasic shocks. These values are significantly different (p less than 0.003). The higher the potential gradient, the longer was the duration of block before conduction returned. Block duration, however, was generally shorter for biphasic than for monophasic waveforms of the same field strength. In conclusion, conduction block can follow either waveform, but biphasic waveforms cause less block than monophasic waveforms. This effect may partially explain the increased defibrillation efficacy of biphasic shocks.


Pacing and Clinical Electrophysiology | 1991

Current Concepts for Selecting the Location, Size and Shape of Defibrillation Electrodes

Raymond E. Ideker; Patrick D. Wolf; Clip Alferness; Wanda Krassowska; William M. Smith

Defibrillation would be improved if the shock strength could be decreased. Decreasing shock strength would lessen the chance that the shock itself could damage the heart. With implantable defibrillators, some patients cannot be defibrillated even with the defibrillator at its highest setting; if the shock strength required for defibrillation were sufficiently lowered to bring the required shock voltage into the range of the device, these patients could be defibrillated. Decreasing shock strength requirements would increase the life of the batteries or would allow tbe use of smaller implanted devices. Since the time to charge tbe capacitors would be reduced, it would also shorten the interval until tbe shock was delivered and, hence, decrease the time that tbe patient was without blood flow during fibrillation. Tbe primary variables tbat can be altered to attempt to lower tbe shock strength required for defibrillation include those dealing with the shock waveform, including duration, polarity, and wavesbape, and tbose involving tbe sbock electrodes, including materials of construction, size, shape, and location. This article is concerned witb the last three of tbese variables. It discusses the basic principles, as they are understood today,


Circulation Research | 1988

Transmural activations and stimulus potentials in three-dimensional anisotropic canine myocardium.

D. W. Frazier; Wanda Krassowska; Peng-Sheng Chen; Patrick D. Wolf; N. D. Danieley; William M. Smith; Raymond E. Ideker

Epicardial and endocardial pacing are widely used, yet little is known about the three-dimensional distribution of potentials generated by the pacing stimulus or the spread of activation from these pacing sites. In six open-chest dogs, simultaneous recordings were made from 120 transmural electrodes in 40 plunge electrodes within a 35 X 20 X 5-mm portion of the right ventricular outflow tract during epicardial and endocardial pacing at a strength of twice diastolic threshold and at 1 mA. The magnitude of extracellular potentials generated by the stimulus and the activation times were compared in regions proximal (less than 10-12 mm) and distal to the pacing site. Local fiber orientation was histologically determined at each recording electrode. For endocardial pacing, endocardial potentials were larger than epicardial potentials only in the proximal region (p less than 0.001); while in the distal region, epicardial potentials were larger (p less than 0.001), and endocardial activation occurred earlier than epicardial activation for both regions (p less than 0.001). For epicardial pacing, epicardial potentials were larger than endocardial potentials in both regions (p less than 0.001), and epicardial activation occurred earlier only in the proximal region (p less than 0.02), while endocardial activation occurred before epicardial activation in the distal region (p less than 0.01). In planes of recording electrodes parallel to the epicardium and endocardium, the initial isochrones were elliptical with the major axes of the ellipses along the mean fiber orientation between the pacing site and recording plane rather than along the local fiber orientation in the recording plane. Thus, the ellipses in each plane rotated with respect to each other so that in three dimensions the activation front was helicoid, yet the twist of the helix was less than that of the corresponding transmural rotation of fibers. For pacing from the right ventricular outflow tract, we conclude that beyond 10-12 mm from endocardial and epicardial pacing sites epicardial stimulus potentials in both cases are larger than endocardial potentials because of resistivity differences inside and outside the heart wall and activation in both cases is primarily endocardial to epicardial because of rapid endocardial conduction, and we conclude that the initial spread of activation is helicoid and determined by transmural fiber direction.

Collaboration


Dive into the Patrick D. Wolf's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

William M. Smith

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

W.M. Smith

Auckland City Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dennis L. Rollins

University of Alabama at Birmingham

View shared research outputs
Researchain Logo
Decentralizing Knowledge