Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Patrick Dowd is active.

Publication


Featured researches published by Patrick Dowd.


Nature | 1998

Genomic amplification of a decoy receptor for Fas ligand in lung and colon cancer

Robert M. Pitti; Scot A. Marsters; David A. Lawrence; Margaret Ann Roy; Frank C. Kischkel; Patrick Dowd; Arthur Huang; Christopher J. Donahue; Steven Sherwood; Daryl T. Baldwin; Paul J. Godowski; William I. Wood; Austin L. Gurney; Kenneth J. Hillan; Robert L. Cohen; Audrey Goddard; David Botstein; Avi Ashkenazi

Fas ligand (FasL) is produced by activated T cells and natural killer cells and it induces apoptosis (programmed cell death) in target cells through the death receptor Fas/Apo1/CD95 (ref. 1). One important role of FasL and Fas is to mediate immune-cytotoxic killing of cells that are potentially harmful to the organism, such as virus-infected or tumour cells. Here we report the discovery of a soluble decoy receptor, termed decoy receptor 3 (DcR3), that binds to FasL and inhibits FasL-induced apoptosis. The DcR3 gene was amplified in about half of 35 primary lung and colon tumours studied, and DcR3 messenger RNA was expressed in malignant tissue. Thus, certain tumours may escape FasL-dependent immune-cytotoxic attack by expressing a decoy receptor that blocks FasL.


Nature | 2004

The ubiquitin ligase COP1 is a critical negative regulator of p53

David Dornan; Ingrid E. Wertz; Harumi Shimizu; David Arnott; Gretchen Frantz; Patrick Dowd; Karen O’Rourke; Hartmut Koeppen; Vishva M. Dixit

COP1 (constitutively photomorphogenic 1) is a RING-finger-containing protein that functions to repress plant photomorphogenesis, the light-mediated programme of plant development. Mutants of COP1 are constitutively photomorphogenic, and this has been attributed to their inability to negatively regulate the proteins LAF1 (ref. 1) and HY5 (ref. 2). The role of COP1 in mammalian cells is less well characterized. Here we identify the tumour-suppressor protein p53 as a COP1-interacting protein. COP1 increases p53 turnover by targeting it for degradation by the proteasome in a ubiquitin-dependent fashion, independently of MDM2 or Pirh2, which are known to interact with and negatively regulate p53. Moreover, COP1 serves as an E3 ubiquitin ligase for p53 in vitro and in vivo, and inhibits p53-dependent transcription and apoptosis. Depletion of COP1 by short interfering RNA (siRNA) stabilizes p53 and arrests cells in the G1 phase of the cell cycle. Furthermore, we identify COP1 as a p53-inducible gene, and show that the depletion of COP1 and MDM2 by siRNA cooperatively sensitizes U2-OS cells to ionizing-radiation-induced cell death. Overall, these results indicate that COP1 is a critical negative regulator of p53 and represents a new pathway for maintaining p53 at low levels in unstressed cells.


Current Biology | 1999

Identification of a new member of the tumor necrosis factor family and its receptor, a human ortholog of mouse GITR

Austin L. Gurney; Scot A. Marsters; Arthur Huang; Robert M. Pitti; Melanie R. Mark; Daryl T. Baldwin; A.M. Gray; Patrick Dowd; Jennifer Brush; S. Heldens; P. Schow; Audrey Goddard; William I. Wood; Kevin P. Baker; Paul J. Godowski; Avi Ashkenazi

The tumor necrosis factor (TNF) and TNF receptor (TNFR) gene superfamilies regulate diverse biological functions, including cell proliferation, differentiation, and survival [1] [2] [3]. We have identified a new TNF-related ligand, designated human GITR ligand (hGITRL), and its human receptor (hGITR), an ortholog of the recently discovered murine glucocorticoid-induced TNFR-related (mGITR) protein [4]. The hGITRL gene mapped to chromosome 1q23, near the gene for the TNF homolog Fas/CD95 ligand [5]. The hGITR gene mapped to chromosome 1p36, near a cluster of five genes encoding TNFR homologs [1] [6]. We found hGITRL mRNA in several peripheral tissues, and detected hGITRL protein on cultured vascular endothelial cells. The levels of hGITR mRNA in tissues were generally low; in peripheral blood T cells, however, antigen-receptor stimulation led to a substantial induction of hGITR transcripts. Cotransfection of hGITRL and hGITR in embryonic kidney 293 cells activated the anti-apoptotic transcription factor NF-kappaB, via a pathway that appeared to involve TNFR-associated factor 2 (TRAF2) [7] and NF-kappaB-inducing kinase (NIK) [8]. Cotransfection of hGITRL and hGITR in Jurkat T leukemia cells inhibited antigen-receptor-induced cell death. Thus, hGITRL and hGITR may modulate T lymphocyte survival in peripheral tissues.


Cancer Research | 2005

Maternal embryonic leucine zipper kinase/murine protein serine-threonine kinase 38 is a promising therapeutic target for multiple cancers

Daniel C. Gray; Adrian M. Jubb; Deborah Hogue; Patrick Dowd; Noelyn M. Kljavin; Sothy Yi; Wei Bai; Gretchen Frantz; Zemin Zhang; Hartmut Koeppen; Frederic J. de Sauvage; David P. Davis

To identify genes that could serve as targets for novel cancer therapeutics, we used a bioinformatic analysis of microarray data comparing gene expression between normal and tumor-derived primary human tissues. From this approach, we have found that maternal embryonic leucine zipper kinase (Melk), a member of the AMP serine/threonine kinase family, exhibits multiple features consistent with the potential utility of this gene as an anticancer target. An oligonucleotide microarray analysis of multiple human tumor samples and cell lines suggests that Melk expression is frequently elevated in cancer relative to normal tissues, a pattern confirmed by quantitative reverse transcription-PCR and Western blotting of selected primary tumor samples. In situ hybridization localized Melk expression to malignant epithelial cells in 96%, 23%, and 13% of colorectal, lung, and ovarian tissue tumor samples, respectively. Expression of this gene is also elevated in spontaneous tumors derived from the ApcMin and Apc1638N murine models of intestinal tumorigenesis. To begin addressing whether Melk is relevant for tumorigenesis, RNA interference-mediated silencing within human and murine tumor cell lines was done. We show that Melk knockdown decreases proliferation and anchorage-independent growth in vitro as well as tumor growth in a xenograft model. Together, these results suggest that Melk may provide a growth advantage for neoplastic cells and, therefore, inactivation may be therapeutically beneficial.


Cancer Research | 2004

COP1, the Negative Regulator of p53, Is Overexpressed in Breast and Ovarian Adenocarcinomas

David Dornan; Sheila Bheddah; Kim Newton; William L. Ince; Gretchen Frantz; Patrick Dowd; Hartmut Koeppen; Vishva M. Dixit; Dorothy French

The tumor suppressor protein p53 plays a central role in protecting normal cells from undergoing transformation. Thus, it is fitting that cancer cells selectively dampen the p53 response to gain a selective growth advantage. In fact, the p53 gene is the most commonly mutated tumor suppressor gene in human cancers, and if the gene is not mutated, then other components of the p53 pathways are skewed to dampen the p53 response to stress. We recently identified COP1 as a novel and critical negative regulator of p53. COP1 is a RING finger-containing protein that targets p53 for degradation to the proteasome and is necessary for p53 turnover in normal and cancer cells. However, the association between COP1 and cancer remains to be determined. We performed expression analysis of COP1 in ovarian and breast cancer tissue microarrays. COP1 is significantly overexpressed in 81% (25 of 32) of breast and 44% (76 of 171) of ovarian adenocarcinoma as assessed by in situ hybridization and immunohistochemistry. Overexpression of COP1 correlated with a striking decrease in steady state p53 protein levels and attenuation of the downstream target gene, p21, in cancers that retain a wild-type p53 gene status. Overall, these results suggest that overexpression of COP1 contributes to the accelerated degradation of p53 protein in cancers and attenuates the tumor suppressor function of p53.


The Journal of Pediatrics | 1997

Partial growth-hormone insensitivity: the role of growth-hormone receptor mutations in idiopathic short stature.

Audrey Goddard; Patrick Dowd; Steven D. Chernausek; Mitchell Geffner; J. Gertner; Raymond Hintz; Nancy J. Hopwood; Selna Kaplan; Leslie Plotnick; Alan Rogol; Robert Rosenfield; Paul Saenger; Nellie Mauras; Richard Hershkopf; Morris Angulo; Kenneth M. Attie

Mutations in the GHR locus may play a role in the cause of idiopathic short stature (ISS) by impairing growth-hormone (GH) receptor (GHR) function. At one extreme, mutations that nullify the function of the GH receptor are linked to complete GH insensitivity syndrome, or Laron syndrome, and we hypothesized that less-disruptive mutations could contribute to partial GH insensitivity syndrome. Low levels of GH binding protein may indicate mutations in the extracellular domain of the receptor, and by focusing on 14 children with ISS who had low GH binding protein and insulin-like growth factor I levels, we found three heterozygotes and one compound heterozygote for mutations in the extracellular domain of the receptor. We have since extended our study to a broader spectrum of patients, adding 76 patients with ISS who were treated with GH in a phase II study of the safety and efficacy of recombinant human GH in ISS and also adding 10 patients who were ascertained as having ISS by pediatric endocrinologists in private practice. The GHR gene has thus been analyzed in 100 patients with ISS, eight of whom were found to carry mutations: four in our original study and four with normal or elevated levels of GH binding protein. The latter group consists of three carriers of heterozygous extracellular domain mutations and one carrier of a heterozygous intracellular domain mutation. Family data suggest that the carriers of these mutations have a range of phenotypes, supporting our hypothesis that the expression of these heterozygous mutations as partial GH insensitivity syndrome depends on the genetic makeup of the person.


Bioinformatics | 2004

GEPIS---quantitative gene expression profiling in normal and cancer tissues

Yan Zhang; David A. Eberhard; Gretchen Frantz; Patrick Dowd; Thomas D. Wu; Yan Zhou; Colin K. Watanabe; Shiuh-Ming Luoh; Paul Polakis; Kenneth J. Hillan; William I. Wood; Zemin Zhang

MOTIVATION Expression profiling in diverse tissues is fundamental to understanding gene function as well as therapeutic target identification. The vast collection of expressed sequence tags (ESTs) and the associated tissue source information provides an attractive opportunity for studying gene expression. RESULTS To facilitate EST-based expression analysis, we developed GEPIS (gene expression profiling in silico), a tool that integrates EST and tissue source information to compute gene expression patterns in a large panel of normal and tumor samples. We found EST-based expression patterns to be consistent with published papers as well as our own experimental results. We also built a GEPIS Regional Atlas that depicts expression characteristics of all genes in a selected genomic region. This program can be adapted for large-scale screening for genes with desirable expression patterns, as illustrated by our large-scale mining for tissue- and tumor-specific genes. AVAILABILITY The email server version of the GEPIS application is freely available at http://share.gene.com/share/gepis. An interactive version of GEPIS will soon be freely available at http://www.cgl.ucsf.edu/Research/genentech/gepis/. The source code, modules, data and gene lists can be downloaded at http://share.gene.com/share/gepis.


Nature Genetics | 1994

Confirmation of BRCA1 by analysis of germline mutations linked to breast and ovarian cancer in ten families.

Lori Friedman; Elizabeth A. Ostermeyer; Csilla I. Szabo; Patrick Dowd; Eric D. Lynch; Sarah Rowell; Mary Claire King


Genome Research | 2003

The Secreted Protein Discovery Initiative (SPDI), a Large-Scale Effort to Identify Novel Human Secreted and Transmembrane Proteins: A Bioinformatics Assessment

Hilary F. Clark; Austin L. Gurney; Evangeline Abaya; Kevin P. Baker; Daryl Baldwin; Jennifer Brush; Jian Chen; Bernard Chow; Clarissa Chui; Craig Crowley; Bridget Currell; Bethanne Deuel; Patrick Dowd; Dan L. Eaton; Jessica Foster; Christopher Grimaldi; Qimin Gu; Philip E. Hass; Sherry Heldens; Arthur Huang; Hok Seon Kim; Laura Klimowski; Yisheng Jin; Stephanie Johnson; James Lee; Lhney Lewis; Dongzhou Liao; Melanie Mark; Edward Robbie; Celina Sanchez


Proceedings of the National Academy of Sciences of the United States of America | 2000

Cloning and characterization of IL-17B and IL-17C, two new members of the IL-17 cytokine family.

Hanzhong Li; Jian Chen; Arthur Huang; Jeremy Stinson; Sherry Heldens; Jessica Foster; Patrick Dowd; Austin L. Gurney; William I. Wood

Collaboration


Dive into the Patrick Dowd's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sarah Rowell

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eric D. Lynch

University of Washington

View shared research outputs
Researchain Logo
Decentralizing Knowledge