Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Patrick E. Phelan is active.

Publication


Featured researches published by Patrick E. Phelan.


Applied Physics Letters | 2006

Measurements of nanofluid viscosity and its implications for thermal applications

Ravi Prasher; David Song; Jin-Lin Wang; Patrick E. Phelan

Experimental results on the viscosity of alumina-based nanofluids are reported for various shear rates, temperature, nanoparticle diameter, and nanoparticle volume fraction. From the data it seems that the increase in the nanofluid viscosity is higher than the enhancement in the thermal conductivity as reported in the literature. It is shown, however, that the viscosity has to be increased by more than a factor of 4—relative to the increase in thermal conductivity—to make the nanofluid thermal performance worse than that of the base fluid.


Journal of Renewable and Sustainable Energy | 2010

Nanofluid-based direct absorption solar collector

Todd P. Otanicar; Patrick E. Phelan; Ravi Prasher; Gary Rosengarten; Robert A. Taylor

Solar energy is one of the best sources of renewable energy with minimal environmental impact. Direct absorption solar collectors have been proposed for a variety of applications such as water heating; however the efficiency of these collectors is limited by the absorption properties of the working fluid, which is very poor for typical fluids used in solar collectors. It has been shown that mixing nanoparticles in a liquid (nanofluid) has a dramatic effect on the liquid thermophysical properties such as thermal conductivity. Nanoparticles also offer the potential of improving the radiative properties of liquids, leading to an increase in the efficiency of direct absorption solar collectors. Here we report on the experimental results on solar collectors based on nanofluids made from a variety of nanoparticles (carbon nanotubes, graphite, and silver). We demonstrate efficiency improvements of up to 5% in solar thermal collectors by utilizing nanofluids as the absorption mechanism. In addition the experiment...


Journal of Heat Transfer-transactions of The Asme | 2006

Brownian-motion-based convective-conductive model for the effective thermal conductivity of nanofluids

Ravi Prasher; Prajesh Bhattacharya; Patrick E. Phelan

Here we show through an order-of-magnitude analysis that the enhancement in the effective thermal conductivity of nanofluids is due mainly to the localized convection caused by the Brownian movement of the nanoparticles. We also introduce a convective-conductive model which accurately captures the effects of particle size, choice of base liquid, thermal interfacial resistance between the particles and liquid, temperature, etc. This model is a combination of the Maxwell-Garnett (MG) conduction model and the convection caused by the Brownian movement of the nanoparficles, and reduces to the MG model for large particle sizes. The model is in good agreement with data on water, ethylene glycol, and oil-based nanofluids, and shows that the lighter the nanoparticles, the greater the convection effect in the liquid, regardless of the thermal conductivity of the nanoparticles.


Journal of Applied Physics | 2013

Small particles, big impacts: A review of the diverse applications of nanofluids

Robert A. Taylor; Sylvain Coulombe; Todd P. Otanicar; Patrick E. Phelan; Andrey Gunawan; Wei Lv; Gary Rosengarten; Ravi Prasher; Himanshu Tyagi

Nanofluids—a simple product of the emerging world of nanotechnology—are suspensions of nanoparticles (nominally 1–100 nm in size) in conventional base fluids such as water, oils, or glycols. Nanofluids have seen enormous growth in popularity since they were proposed by Choi in 1995. In the year 2011 alone, there were nearly 700 research articles where the term nanofluid was used in the title, showing rapid growth from 2006 (175) and 2001 (10). The first decade of nanofluid research was primarily focused on measuring and modeling fundamental thermophysical properties of nanofluids (thermal conductivity, density, viscosity, heat transfer coefficient). Recent research, however, explores the performance of nanofluids in a wide variety of other applications. Analyzing the available body of research to date, this article presents recent trends and future possibilities for nanofluids research and suggests which applications will see the most significant improvement from employing nanofluids.


Applied Physics Letters | 2006

Effect of aggregation on thermal conduction in colloidal nanofluids

Ravi Prasher; William Evans; Paul Meakin; Jacob Fish; Patrick E. Phelan; Pawel Keblinski

Using effective medium theory the authors demonstrate that the thermal conductivity of nanofluids can be significantly enhanced by the aggregation of nanoparticles into clusters. Predictions of the effective medium theory are in excellent agreement with detailed numerical calculation on model nanofluids involving fractal clusters and show the importance of cluster morphology on thermal conductivity enhancements.


Nanoscale Research Letters | 2011

Nanofluid Optical Property Characterization: Towards Efficient Direct Absorption Solar Collectors

Robert S. Taylor; Patrick E. Phelan; Todd P. Otanicar; Ronald J. Adrian; Ravi Prasher

Suspensions of nanoparticles (i.e., particles with diameters < 100 nm) in liquids, termed nanofluids, show remarkable thermal and optical property changes from the base liquid at low particle loadings. Recent studies also indicate that selected nanofluids may improve the efficiency of direct absorption solar thermal collectors. To determine the effectiveness of nanofluids in solar applications, their ability to convert light energy to thermal energy must be known. That is, their absorption of the solar spectrum must be established. Accordingly, this study compares model predictions to spectroscopic measurements of extinction coefficients over wavelengths that are important for solar energy (0.25 to 2.5 μm). A simple addition of the base fluid and nanoparticle extinction coefficients is applied as an approximation of the effective nanofluid extinction coefficient. Comparisons with measured extinction coefficients reveal that the approximation works well with water-based nanofluids containing graphite nanoparticles but less well with metallic nanoparticles and/or oil-based fluids. For the materials used in this study, over 95% of incoming sunlight can be absorbed (in a nanofluid thickness ≥10 cm) with extremely low nanoparticle volume fractions - less than 1 × 10-5, or 10 parts per million. Thus, nanofluids could be used to absorb sunlight with a negligible amount of viscosity and/or density (read: pumping power) increase.


Journal of Applied Physics | 2004

Brownian dynamics simulation to determine the effective thermal conductivity of nanofluids

Prajesh Bhattacharya; Sanjoy K. Saha; A. Yadav; Patrick E. Phelan; Ravi Prasher

A nanofluid is a fluid containing suspended solid particles, with sizes on the order of nanometers. Normally, nanofluids have higher thermal conductivities than their base fluids. Therefore, it is of interest to predict the effective thermal conductivity of such a nanofluid under different conditions, especially since only limited experimental data are available. We have developed a technique to compute the effective thermal conductivity of a nanofluid using Brownian dynamics simulation, which has the advantage of being computationally less expensive than molecular dynamics, and have coupled that with the equilibrium Green–Kubo method. By comparing the results of our calculation with the available experimental data, we show that our technique predicts the thermal conductivity of nanofluids to a good level of accuracy.


Journal of Renewable and Sustainable Energy | 2011

Applicability of nanofluids in high flux solar collectors

Robert A. Taylor; Patrick E. Phelan; Todd P. Otanicar; Chad A. Walker; Monica Nguyen; Steven Trimble; Ravi Prasher

Concentrated solar energy has become the input for an increasing number of experimental and commercial thermal systems over the past 10–15 years [M. Thirugnanasambandam et al., Renewable Sustainable Energy Rev. 14 (2010)]. Recent papers have indicated that the addition of nanoparticles to conventional working fluids (i.e., nanofluids) can improve heat transfer and solar collection [H. Tyagi et al., J. Sol. Energy Eng. 131, 4 (2009); P. E. Phelan et al., Annu. Rev. Heat Transfer 14 (2005)]. This work indicates that power tower solar collectors could benefit from the potential efficiency improvements that arise from using a nanofluid working fluid. A notional design of this type of nanofluid receiver is presented. Using this design, we show a theoretical nanofluid enhancement in efficiency of up to 10% as compared to surface-based collectors when solar concentration ratios are in the range of 100–1000. Furthermore, our analysis shows that graphite nanofluids with volume fractions on the order of 0.001% or l...


Nano Letters | 2008

Increased Hot-Plate Ignition Probability for Nanoparticle-Laden Diesel Fuel

Himanshu Tyagi; Patrick E. Phelan; Ravi Prasher; Robert E. Peck; Taewoo Lee; Jose Rafael Pacheco; Paul Arentzen

The present study attempts to improve the ignition properties of diesel fuel by investigating the influence of adding aluminum and aluminum oxide nanoparticles to diesel. As part of this study, droplet ignition experiments were carried out atop a heated hot plate. Different types of fuel mixtures were used; both particle size (15 and 50 nm) as well as the volume fraction (0%, 0.1%, and 0.5%) of nanoparticles added to diesel were varied. For each type of fuel mixture, several droplets were dropped on the hot plate from a fixed height and under identical conditions, and the probability of ignition of that fuel was recorded based on the number of droplets that ignited. These experiments were repeated at several temperatures over the range of 688-768 degrees C. It was observed that the ignition probability for the fuel mixtures that contained nanoparticles was significantly higher than that of pure diesel.


IEEE Transactions on Components and Packaging Technologies | 2002

Current and future miniature refrigeration cooling technologies for high power microelectronics

Patrick E. Phelan; Victor Adrian Chiriac; Tien Yu Tom Lee

Utilizing refrigeration may provide the only means by which future high-performance electronic chips can be maintained below predicted maximum temperature limits. Widespread application of refrigeration in electronic packaging will remain limited, until the refrigerators can be made sufficiently small so that they can be easily incorporated within the packaging. A review of existing microscale and mesoscale refrigeration systems revealed that only thermoelectric coolers (TECs) are now commercially available in small sizes. However, existing TECs are limited by their maximum cooling power and low efficiencies. A simple model was constructed to analyze the performance of both existing and predicted future TECs, in an electronic packaging environment. Comparison with the cooling provided by an existing high-performance fan shows that they are most effective for heat loads less than approximately 100 W, but that for higher heat loads, fan air cooling actually yields a lower junction temperature. Thermal resistance between the refrigerator and the chip is not as critical as the thermal resistance between the refrigerator and the ambient air.

Collaboration


Dive into the Patrick E. Phelan's collaboration.

Top Co-Authors

Avatar

Ravi Prasher

Arizona State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert A. Taylor

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

Himanshu Tyagi

Indian Institute of Technology Ropar

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrey Gunawan

Arizona State University

View shared research outputs
Top Co-Authors

Avatar

Anil K. Vuppu

Arizona State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark A. Hayes

Arizona State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge