Patrick J. Balducci
Pacific Northwest National Laboratory
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Patrick J. Balducci.
Archive | 2010
Robert G. Pratt; Patrick J. Balducci; Clint E. Gerkensmeyer; Srinivas Katipamula; Michael Cw Kintner-Meyer; Thomas F. Sanquist; Kevin P. Schneider; Thomas Secrest
This report articulates nine mechanisms by which the smart grid can reduce energy use and carbon impacts associated with electricity generation and delivery. The quantitative estimates of potential reductions in electricity sector energy and associated CO2 emissions presented are based on a survey of published results and simple analyses. This report does not attempt to justify the cost effectiveness of the smart grid, which to date has been based primarily upon the twin pillars of cost-effective operation and improved reliability. Rather, it attempts to quantify the additional energy and CO2 emission benefits inherent in the smart grid’s potential contribution to the nation’s goal of mitigating climate change by reducing the carbon footprint of the electric power system.
Archive | 2010
Michael Cw Kintner-Meyer; Patrick J. Balducci; Chunlian Jin; Tony B. Nguyen; Marcelo A. Elizondo; Vilayanur V. Viswanathan; Xinxin Guo; Francis K. Tuffner
Wind production, which has expanded rapidly in recent years, could be an important element in the future efficient management of the electric power system; however, wind energy generation is uncontrollable and intermittent in nature. Thus, while wind power represents a significant opportunity to the Bonneville Power Administration (BPA), integrating high levels of wind resources into the power system will bring great challenges to generation scheduling and in the provision of ancillary services. This report addresses several key questions in the broader discussion on the integration of renewable energy resources in the Pacific Northwest power grid. More specifically, it addresses the following questions: a) how much total reserve or balancing requirements are necessary to accommodate the simulated expansion of intermittent renewable energy resources during the 2019 time horizon, and b) what are the most cost effective technological solutions for meeting load balancing requirements in the Northwest Power Pool (NWPP).
Archive | 2012
Michael Cw Kintner-Meyer; Patrick J. Balducci; Whitney G. Colella; Marcelo A. Elizondo; Chunlian Jin; Tony B. Nguyen; Vilayanur V. Viswanathan; Yu Zhang
To examine the role that energy storage could play in mitigating the impacts of the stochastic variability of wind generation on regional grid operation, the Pacific Northwest National Laboratory (PNNL) examined a hypothetical 2020 grid scenario in which additional wind generation capacity is built to meet renewable portfolio standard targets in the Western Interconnection. PNNL developed a stochastic model for estimating the balancing requirements using historical wind statistics and forecasting error, a detailed engineering model to analyze the dispatch of energy storage and fast-ramping generation devices for estimating size requirements of energy storage and generation systems for meeting new balancing requirements, and financial models for estimating the life-cycle cost of storage and generation systems in addressing the future balancing requirements for sub-regions in the Western Interconnection. Evaluated technologies include combustion turbines, sodium sulfur (Na-S) batteries, lithium ion batteries, pumped-hydro energy storage, compressed air energy storage, flywheels, redox flow batteries, and demand response. Distinct power and energy capacity requirements were estimated for each technology option, and battery size was optimized to minimize costs. Modeling results indicate that in a future power grid with high-penetration of renewables, the most cost competitive technologies for meeting balancing requirements include Na-S batteries and flywheels.
ieee pes power systems conference and exposition | 2011
Michael Cw Kintner-Meyer; Chunlian Jin; Patrick J. Balducci; Marcelo A. Elizondo; Xinxin Guo; Tony B. Nguyen; Francis K. Tuffner; Vilayanur V. Viswanathan
This paper addresses the following key questions in the discussion on the integration of renewable energy resources in the Pacific Northwest power grid: a) what will be the future balancing requirement to accommodate a simulated expansion of wind energy resources from 3.3 GW in 2008 to 14.4 GW in 2019 in the Northwest Power Pool (NWPP), and b) what are the most cost effective technological solutions for meeting the balancing requirements in the Northwest Power Pool (NWPP). A life-cycle analysis was performed to assess the least-cost technology option for meeting the new balancing requirement. The technologies considered in this study include conventional turbines (CT), sodium sulfur (NaS) batteries, lithium ion (Li-ion) batteries, pumped hydro energy storage (PH), and demand response (DR). Hybrid concepts that combine 2 or more of the technologies above are also evaluated. This analysis was performed with collaboration by the Bonneville Power Administration and funded by the Energy Storage Systems Program of the U.S. Department of Energy.
power and energy society general meeting | 2015
Di Wu; Chunlian Jin; Patrick J. Balducci; Michael Cw Kintner-Meyer
This paper presents a methodology for evaluating benefits of battery storage for multiple grid applications, including energy arbitrage, balancing service, capacity value, distribution system equipment deferral, and outage mitigation. In the proposed method, at each hour, a look-ahead optimization is first formulated and solved to determine battery base operating point. The minute by minute simulation is then performed to simulate the actual battery operation. This methodology is used to assess energy storage alternatives in Puget Sound Energy System. Different battery storage candidates are simulated for a period of one year to assess different value streams and overall benefits, as part of a financial feasibility evaluation of battery storage projects.
power and energy society general meeting | 2016
Di Wu; Michael Cw Kintner-Meyer; Tao Yang; Patrick J. Balducci
This paper proposes methods to estimate the potential benefits and determine the optimal energy and power capacity of battery storage system for behind-the-meter application. In the proposed method, a linear programming is first formulated using typical load profiles, energy/demand charge rates, and a set of battery parameters to determine the maximum saving in electric energy cost. The optimization formulation is then adapted to include battery cost as a function of its power and energy capacity in order to capture the trade-off between benefits and cost, and therefore to determine the most economic battery size. Using the proposed methods, economic analysis and optimal sizing have been performed for a few commercial buildings and utility rate structures that are representative of those found in the various regions in the U.S. The key factors that affect the economic benefits and optimal size have been identified. The proposed methods and case study results cannot only help commercial and industrial customers or battery vendors to evaluate and size the storage system for behind-the-meter application, but also assist utilities and policy makers to design electricity rate or subsidies to promote the development of energy storage.
Archive | 2013
Patrick J. Balducci; Chunlian Jin; Di Wu; Michael Cw Kintner-Meyer; Patrick Leslie; Charles Daitch
As part of an ongoing study co-funded by the Bonneville Power Administration, under its Technology Innovation Grant Program, and the U.S. Department of Energy, the Pacific Northwest National Laboratory (PNNL) has developed an approach and modeling tool for assessing the net benefits of using energy storage located close to the customer in the distribution grid to manage demand. PNNL in collaboration with PSE and Primus Power has evaluated the net benefits of placing a zinc bromide battery system at two locations in the PSE system (Baker River / Rockport and Bainbridge Island). Energy storage can provide a number of benefits to the utility through the increased flexibility it provides to the grid system. Applications evaluated in the assessment include capacity value, balancing services, arbitrage, distribution deferral and outage mitigation. This report outlines the methodology developed for this study and Phase I results.
Archive | 2013
Di Wu; Chunlian Jin; Patrick J. Balducci; Michael Cw Kintner-Meyer
This volume presents the battery storage evaluation tool developed at Pacific Northwest National Laboratory (PNNL), which is used to evaluate benefits of battery storage for multiple grid applications, including energy arbitrage, balancing service, capacity value, distribution system equipment deferral, and outage mitigation. This tool is based on the optimal control strategies to capture multiple services from a single energy storage device. In this control strategy, at each hour, a look-ahead optimization is first formulated and solved to determine battery base operating point. The minute by minute simulation is then performed to simulate the actual battery operation. This volume provide background and manual for this evaluation tool.
Energy and Environmental Science | 2018
Patrick J. Balducci; M. Jan E. Alam; Trevor D. Hardy; Di Wu
The ability to define the potential value that energy storage systems (ESSs) could generate through various applications in electric power systems, and an understanding of how these values change due to variations in ESS performance and parameters, market structure, utility structures, and valuation methodologies is highly important in advancing ESS deployment. This paper presents a taxonomy for assigning benefits to the use cases or services provided by ESSs, defines approaches for monetizing the value associated with these services, assigns values, or more precisely ranges of values, to major ESS applications by region based on a review of an extensive set of literature, and summarizes and evaluates the capabilities of several available tools currently used to estimate value for specific ESS deployments.
international conference on fuel cell science engineering and technology fuelcell collocated with asme international conference on energy sustainability | 2012
Michael Cw Kintner-Meyer; Tony B. Nguyen; Chunlian Jin; Patrick J. Balducci; Marcelo A. Elizondo; Vilayanur V. Viswanathan; Yu Zhang; Whitney G. Colella
Energy storage has recently attracted significant interest as an enabling technology for integrating stochastic, variable renewable power into the electric grid. To meet the renewable portfolio standards targets imposed by 29 U.S. states and the District of Columbia, electricity production from wind technology has increased significantly. At the same time, wind turbines, like many renewables, produce power in a manner that is stochastic, variable, and non-dispatchable. These attributes introduce challenges to generation scheduling and the provision of ancillary services. To study the impacts of the stochastic variability of wind on regional grid operation and the role that energy storage could play to mitigate these impacts, Pacific Northwest National Laboratory (PNNL) has developed a series of linked, complex techno-economic-environmental models to address two key questions: A) What are the future expanded balancing requirements necessary to accommodate enhanced wind turbine capacity, so as to meet the renewable portfolio standards in 2020? Specific analyses are conducted for the four North American Electric Reliability Corporation (NERC) western subregions. B) What are the most cost-effective technological solutions for providing either fast ramping generation or energy storage to serve these balancing requirements?PNNL applied a stochastic approach to assess the future, expanded balancing requirements for the four western subregions with high wind penetration in 2020. The estimated balancing requirements are quantified for four subregions: Arizona-New Mexico-Southern Nevada (AZ-NM-SNV), California-Mexico (CA-MX), Northwest Power Pool (NWPP), and Rocky Mountain Power Pool (RMPP). Model results indicate that the new balancing requirements will span a spectrum of frequencies, from minute-to-minute variability (intra-hour balancing) to those indicating cycles over several hours (inter-hour balancing). The sharp ramp rates in the intra-hour balancing are of significant concern to grid operators. Consequently, this study focuses on analyzing the intra-hour balancing needs.A detailed, life-cycle cost (LCC) modeling effort was used to assess the cost competitiveness of different technologies to address the future intra-hour balancing requirements. Technological solutions considered include combustion turbines, sodium sulfur (NaS) batteries, lithium ion (Li-ion) batteries, pumped-hydro energy storage (PHES), compressed air energy storage (CAES), flywheels, redox flow batteries, and demand response (DR). Hybrid concepts were also evaluated. For each technology, distinct power and energy capacity requirements are estimated. LCC results for the sole application of intra-hour balancing indicate that the most cost competitive technologies include Na-S batteries, flywheels, and Li-ion assuming future cost reductions. Demand response using smart charging strategies was found to also be cost-competitive with natural gas combustion turbines. This finding is consistent among the four subregions and is generally applicable to other regions.Copyright