Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Patrick M. Boyle is active.

Publication


Featured researches published by Patrick M. Boyle.


Nature Chemical Biology | 2012

Natural strategies for the spatial optimization of metabolism in synthetic biology

Christina M. Agapakis; Patrick M. Boyle; Pamela A. Silver

Metabolism is a highly interconnected web of chemical reactions that power life. Though the stoichiometry of metabolism is well understood, the multidimensional aspects of metabolic regulation in time and space remain difficult to define, model and engineer. Complex metabolic conversions can be performed by multiple species working cooperatively and exchanging metabolites via structured networks of organisms and resources. Within cells, metabolism is spatially regulated via sequestration in subcellular compartments and through the assembly of multienzyme complexes. Metabolic engineering and synthetic biology have had success in engineering metabolism in the first and second dimensions, designing linear metabolic pathways and channeling metabolic flux. More recently, engineering of the third dimension has improved output of engineered pathways through isolation and organization of multicell and multienzyme complexes. This review highlights natural and synthetic examples of three-dimensional metabolism both inter- and intracellularly, offering tools and perspectives for biological design.


Metabolic Engineering | 2012

Parts plus pipes: Synthetic biology approaches to metabolic engineering

Patrick M. Boyle; Pamela A. Silver

Synthetic biologists combine modular biological parts to create higher-order devices. Metabolic engineers construct biological pipes by optimizing the microbial conversion of basic substrates to desired compounds. Many scientists work at the intersection of these two philosophies, employing synthetic devices to enhance metabolic engineering efforts. These integrated approaches promise to do more than simply improve product yields; they can expand the array of products that are tractable to produce biologically. In this review, we explore the application of synthetic biology techniques to next-generation metabolic engineering challenges, as well as the emerging engineering principles for biological design.


Journal of Biological Engineering | 2010

Insulation of a synthetic hydrogen metabolism circuit in bacteria

Christina M. Agapakis; Daniel C. Ducat; Patrick M. Boyle; Edwin H Wintermute; Jeffrey C. Way; Pamela A. Silver

BackgroundThe engineering of metabolism holds tremendous promise for the production of desirable metabolites, particularly alternative fuels and other highly reduced molecules. Engineering approaches must redirect the transfer of chemical reducing equivalents, preventing these electrons from being lost to general cellular metabolism. This is especially the case for high energy electrons stored in iron-sulfur clusters within proteins, which are readily transferred when two such clusters are brought in close proximity. Iron sulfur proteins therefore require mechanisms to ensure interaction between proper partners, analogous to many signal transduction proteins. While there has been progress in the isolation of engineered metabolic pathways in recent years, the design of insulated electron metabolism circuits in vivo has not been pursued.ResultsHere we show that a synthetic hydrogen-producing electron transfer circuit in Escherichia coli can be insulated from existing cellular metabolism via multiple approaches, in many cases improving the function of the pathway. Our circuit is composed of heterologously expressed [Fe-Fe]-hydrogenase, ferredoxin, and pyruvate-ferredoxin oxidoreductase (PFOR), allowing the production of hydrogen gas to be coupled to the breakdown of glucose. We show that this synthetic pathway can be insulated through the deletion of competing reactions, rational engineering of protein interaction surfaces, direct protein fusion of interacting partners, and co-localization of pathway components on heterologous protein scaffolds.ConclusionsThrough the construction and characterization of a synthetic metabolic circuit in vivo, we demonstrate a novel system that allows for predictable engineering of an insulated electron transfer pathway. The development of this system demonstrates working principles for the optimization of engineered pathways for alternative energy production, as well as for understanding how electron transfer between proteins is controlled.


Genes & Development | 2012

Synthetic memory circuits for tracking human cell fate

Devin R. Burrill; Mara C. Inniss; Patrick M. Boyle; Pamela A. Silver

A variety of biological phenomena, from disease progression to stem cell differentiation, are typified by a prolonged cellular response to a transient environmental cue. While biologically relevant, heterogeneity in these long-term responses is difficult to assess at the population level, necessitating the development of biological tools to track cell fate within subpopulations. Here we present a novel synthetic biology approach for identifying and tracking mammalian cell subpopulations. We constructed three genomically integrated circuits that use bistable autoregulatory transcriptional feedback to retain memory of exposure to brief stimuli. These memory devices are used to isolate and track the progeny of cells that responded differentially to doxycycline, hypoxia, or DNA-damaging agents. Following hypoxic or ultraviolet radiation exposure, strongly responding cells activate the memory device and exhibit changes in gene expression, growth rates, and viability for multiple generations after the initial stimulus. Taken together, these results indicate that a heritable memory of hypoxia and DNA damage exists in subpopulations that differ in long-term cell behavior.


Journal of the Royal Society Interface | 2009

Harnessing nature's toolbox: regulatory elements for synthetic biology

Patrick M. Boyle; Pamela A. Silver

Synthetic biologists seek to engineer complex biological systems composed of modular elements. Achieving higher complexity in engineered biological organisms will require manipulating numerous systems of biological regulation: transcription; RNA interactions; protein signalling; and metabolic fluxes, among others. Exploiting the natural modularity at each level of biological regulation will promote the development of standardized tools for designing biological systems.


Genetics | 2009

Systems-Level Engineering of Nonfermentative Metabolism in Yeast

Caleb J. Kennedy; Patrick M. Boyle; Zeev Waks; Pamela A. Silver

We designed and experimentally validated an in silico gene deletion strategy for engineering endogenous one-carbon (C1) metabolism in yeast. We used constraint-based metabolic modeling and computer-aided gene knockout simulations to identify five genes (ALT2, FDH1, FDH2, FUM1, and ZWF1), which, when deleted in combination, predicted formic acid secretion in Saccharomyces cerevisiae under aerobic growth conditions. Once constructed, the quintuple mutant strain showed the predicted increase in formic acid secretion relative to a formate dehydrogenase mutant (fdh1 fdh2), while formic acid secretion in wild-type yeast was undetectable. Gene expression and physiological data generated post hoc identified a retrograde response to mitochondrial deficiency, which was confirmed by showing Rtg1-dependent NADH accumulation in the engineered yeast strain. Formal pathway analysis combined with gene expression data suggested specific modes of regulation that govern C1 metabolic flux in yeast. Specifically, we identified coordinated transcriptional regulation of C1 pathway enzymes and a positive flux control coefficient for the branch point enzyme 3-phosphoglycerate dehydrogenase (PGDH). Together, these results demonstrate that constraint-based models can identify seemingly unrelated mutations, which interact at a systems level across subcellular compartments to modulate flux through nonfermentative metabolic pathways.


Molecular Biology of the Cell | 2011

Whole genome siRNA cell-based screen links mitochondria to Akt signaling network through uncoupling of electron transport chain

William Senapedis; Caleb J. Kennedy; Patrick M. Boyle; Pamela A. Silver

Akt activation sequesters FOXO1a away from its target genes and serves as an endpoint of a complex signaling network. A cell-based RNAi screen reveals an extensive network of genes, including UCP5, which directs nuclear localization of FOXO1a. Silencing of UCP5 disrupts the mitochondria and induces JNK1, creating a link to the Akt signaling network.


Developmental Dynamics | 1997

Craniofacial abnormalities in mice carrying a dominant interference mutation in type X collagen

Kun Sung Chung; Olena Jacenko; Patrick M. Boyle; Björn Olsen; Ichiro Nishimura

Type X collagen is a short, non‐fibril forming collagen restricted to hypertrophic cartilage, and has been hypothesized to play a role in endochondral ossification. The purpose of the study was to investigate the consequences resulting from the interference of type X collagen function on the growth and development of the craniofacial skeleton through analysis of transgenic mice with a dominant interference mutation for type X collagen. The craniofacial tissues of 21‐day‐old transgenic mice were examined by: cephalometric and radiographic densitometry analyses, conventional histology, and immunohistochemistry using antibodies specific for either endogenous mouse type X collagen or the transgene product. Genotypically positive mutant mice showed moderate but statistically significant craniofacial skeletal abnormalities, including the underdevelopment of the chondrocranium and mandible, but no cleft palate. Mean radiographic optical densities of the mutant condylar cartilage and the subchondylar areas were 32% less than the corresponding areas of normal mandibles, while mean radiographic optical density measured at the incisor tooth point remained constant. Histologically, transgene‐positive mice revealed compressed hypertrophic cartilage zones and reduced trabeculae in both the mandibular condyle and the synchondroses of the chondrocranium. In the normal condyle, mouse type X collagen was localized by the monospecific antibody against a synthetic rat type X collagen NC1 peptide throughout the hypertrophic cartilage layer; in the mutant condyle, immunoreactivity to endogenous type X collagen was only seen sporadically. The truncated type X collagen transgene product, identified with the monoclonal antibody against an epitope within the chick type X collagen NC2 domain, persisted in the lower hypertrophic cartilage layer and the primary spongiosa, rather than being removed by subsequent endochondral ossification. The data suggested that the expression of the chick type X collagen transgene product was strongly associated with the craniofacial skeletal abnormalities that were distinct from other cartilage‐related phenotypes. Dev. Dyn. 208:544–552, 1997.


Journal of Biological Engineering | 2012

A BioBrick compatible strategy for genetic modification of plants

Patrick M. Boyle; Devin R. Burrill; Mara C. Inniss; Christina M. Agapakis; Aaron Deardon; Jonathan G dewerd; Michael A Gedeon; Jacqueline Y Quinn; Morgan L Paull; Anugraha M. Raman; Mark Theilmann; Lu Wang; Julia Winn; Oliver Medvedik; Kurt Schellenberg; Karmella A. Haynes; Alain Viel; Tamara Jane Brenner; George M. Church; Jagesh V. Shah; Pamela A. Silver

BackgroundPlant biotechnology can be leveraged to produce food, fuel, medicine, and materials. Standardized methods advocated by the synthetic biology community can accelerate the plant design cycle, ultimately making plant engineering more widely accessible to bioengineers who can contribute diverse creative input to the design process.ResultsThis paper presents work done largely by undergraduate students participating in the 2010 International Genetically Engineered Machines (iGEM) competition. Described here is a framework for engineering the model plant Arabidopsis thaliana with standardized, BioBrick compatible vectors and parts available through the Registry of Standard Biological Parts (http://www.partsregistry.org). This system was used to engineer a proof-of-concept plant that exogenously expresses the taste-inverting protein miraculin.ConclusionsOur work is intended to encourage future iGEM teams and other synthetic biologists to use plants as a genetic chassis. Our workflow simplifies the use of standardized parts in plant systems, allowing the construction and expression of heterologous genes in plants within the timeframe allotted for typical iGEM projects.


Disease Models & Mechanisms | 2013

Type XVIII collagen is essential for survival during acute liver injury in mice

Michael B. Duncan; Changqing Yang; Harikrishna Tanjore; Patrick M. Boyle; Doruk Keskin; Hikaru Sugimoto; Michael Zeisberg; Björn Olsen; Raghu Kalluri

SUMMARY The regenerative response to drug- and toxin-induced liver injury induces changes to the hepatic stroma, including the extracellular matrix. Although the extracellular matrix is known to undergo changes during the injury response, its impact on maintaining hepatocyte function and viability in this process remains largely unknown. We demonstrate that recovery from toxin-mediated injury is impaired in mice deficient in a key liver extracellular matrix molecule, type XVIII collagen, and results in rapid death. The type-XVIII-collagen-dependent response to liver injury is mediated by survival signals induced by α1β1 integrin, integrin linked kinase and the Akt pathway, and mice deficient in either α1β1 integrin or hepatocyte integrin linked kinase also succumb to toxic liver injury. These findings demonstrate that type XVIII collagen is an important functional component of the liver matrix microenvironment and is crucial for hepatocyte survival during injury and stress.

Collaboration


Dive into the Patrick M. Boyle's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge