Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christina M. Agapakis is active.

Publication


Featured researches published by Christina M. Agapakis.


Nature Chemical Biology | 2012

Natural strategies for the spatial optimization of metabolism in synthetic biology

Christina M. Agapakis; Patrick M. Boyle; Pamela A. Silver

Metabolism is a highly interconnected web of chemical reactions that power life. Though the stoichiometry of metabolism is well understood, the multidimensional aspects of metabolic regulation in time and space remain difficult to define, model and engineer. Complex metabolic conversions can be performed by multiple species working cooperatively and exchanging metabolites via structured networks of organisms and resources. Within cells, metabolism is spatially regulated via sequestration in subcellular compartments and through the assembly of multienzyme complexes. Metabolic engineering and synthetic biology have had success in engineering metabolism in the first and second dimensions, designing linear metabolic pathways and channeling metabolic flux. More recently, engineering of the third dimension has improved output of engineered pathways through isolation and organization of multicell and multienzyme complexes. This review highlights natural and synthetic examples of three-dimensional metabolism both inter- and intracellularly, offering tools and perspectives for biological design.


PLOS ONE | 2014

Plant-associated symbiotic Burkholderia species lack hallmark strategies required in mammalian pathogenesis

Annette A. Angus; Christina M. Agapakis; Stephanie Fong; Shailaja Yerrapragada; Paulina Estrada-de los Santos; Paul Yang; Nannie Song; Stephanie Kano; Jesús Caballero-Mellado; Sergio Miana de Faria; Felix D. Dakora; George M. Weinstock; Ann M. Hirsch

Burkholderia is a diverse and dynamic genus, containing pathogenic species as well as species that form complex interactions with plants. Pathogenic strains, such as B. pseudomallei and B. mallei, can cause serious disease in mammals, while other Burkholderia strains are opportunistic pathogens, infecting humans or animals with a compromised immune system. Although some of the opportunistic Burkholderia pathogens are known to promote plant growth and even fix nitrogen, the risk of infection to infants, the elderly, and people who are immunocompromised has not only resulted in a restriction on their use, but has also limited the application of non-pathogenic, symbiotic species, several of which nodulate legume roots or have positive effects on plant growth. However, recent phylogenetic analyses have demonstrated that Burkholderia species separate into distinct lineages, suggesting the possibility for safe use of certain symbiotic species in agricultural contexts. A number of environmental strains that promote plant growth or degrade xenobiotics are also included in the symbiotic lineage. Many of these species have the potential to enhance agriculture in areas where fertilizers are not readily available and may serve in the future as inocula for crops growing in soils impacted by climate change. Here we address the pathogenic potential of several of the symbiotic Burkholderia strains using bioinformatics and functional tests. A series of infection experiments using Caenorhabditis elegans and HeLa cells, as well as genomic characterization of pathogenic loci, show that the risk of opportunistic infection by symbiotic strains such as B. tuberum is extremely low.


Journal of Biological Engineering | 2010

Insulation of a synthetic hydrogen metabolism circuit in bacteria

Christina M. Agapakis; Daniel C. Ducat; Patrick M. Boyle; Edwin H Wintermute; Jeffrey C. Way; Pamela A. Silver

BackgroundThe engineering of metabolism holds tremendous promise for the production of desirable metabolites, particularly alternative fuels and other highly reduced molecules. Engineering approaches must redirect the transfer of chemical reducing equivalents, preventing these electrons from being lost to general cellular metabolism. This is especially the case for high energy electrons stored in iron-sulfur clusters within proteins, which are readily transferred when two such clusters are brought in close proximity. Iron sulfur proteins therefore require mechanisms to ensure interaction between proper partners, analogous to many signal transduction proteins. While there has been progress in the isolation of engineered metabolic pathways in recent years, the design of insulated electron metabolism circuits in vivo has not been pursued.ResultsHere we show that a synthetic hydrogen-producing electron transfer circuit in Escherichia coli can be insulated from existing cellular metabolism via multiple approaches, in many cases improving the function of the pathway. Our circuit is composed of heterologously expressed [Fe-Fe]-hydrogenase, ferredoxin, and pyruvate-ferredoxin oxidoreductase (PFOR), allowing the production of hydrogen gas to be coupled to the breakdown of glucose. We show that this synthetic pathway can be insulated through the deletion of competing reactions, rational engineering of protein interaction surfaces, direct protein fusion of interacting partners, and co-localization of pathway components on heterologous protein scaffolds.ConclusionsThrough the construction and characterization of a synthetic metabolic circuit in vivo, we demonstrate a novel system that allows for predictable engineering of an insulated electron transfer pathway. The development of this system demonstrates working principles for the optimization of engineered pathways for alternative energy production, as well as for understanding how electron transfer between proteins is controlled.


PLOS ONE | 2011

Towards a Synthetic Chloroplast

Christina M. Agapakis; Henrike Niederholtmeyer; Ramil R. Noche; Tami D. Lieberman; Sean G. Megason; Jeffrey C. Way; Pamela A. Silver

Background The evolution of eukaryotic cells is widely agreed to have proceeded through a series of endosymbiotic events between larger cells and proteobacteria or cyanobacteria, leading to the formation of mitochondria or chloroplasts, respectively. Engineered endosymbiotic relationships between different species of cells are a valuable tool for synthetic biology, where engineered pathways based on two species could take advantage of the unique abilities of each mutualistic partner. Results We explored the possibility of using the photosynthetic bacterium Synechococcus elongatus PCC 7942 as a platform for studying evolutionary dynamics and for designing two-species synthetic biological systems. We observed that the cyanobacteria were relatively harmless to eukaryotic host cells compared to Escherichia coli when injected into the embryos of zebrafish, Danio rerio, or taken up by mammalian macrophages. In addition, when engineered with invasin from Yersinia pestis and listeriolysin O from Listeria monocytogenes, S. elongatus was able to invade cultured mammalian cells and divide inside macrophages. Conclusion Our results show that it is possible to engineer photosynthetic bacteria to invade the cytoplasm of mammalian cells for further engineering and applications in synthetic biology. Engineered invasive but non-pathogenic or immunogenic photosynthetic bacteria have great potential as synthetic biological devices.


American Journal of Botany | 2013

A survey of the microbial community in the rhizosphere of two dominant shrubs of the Negev Desert highlands, Zygophyllum dumosum (Zygophyllaceae) and Atriplex halimus (Amaranthaceae), using cultivation-dependent and cultivation-independent methods

Drora Kaplan; Maskit Maymon; Christina M. Agapakis; Andrew Lee; Andrew Wang; Barry A. Prigge; Mykola Volkogon; Ann M. Hirsch

UNLABELLED PREMISE OF THE STUDY Plant roots comprise more than 50% of the plants biomass. Part of that biomass includes the root microbiome, the assemblage of bacteria and fungi living in the 1-3 mm region adjacent to the external surface of the root, the rhizosphere. We hypothesized that the microorganisms living in the rhizosphere and in bulk soils of the harsh environment of the Negev Desert of Israel had potential for use as plant-growth-promoting bacteria (PGPB) to improve plant productivity in nutrient-poor, arid soils that are likely to become more common as the climate changes. • METHODS We used cultivation-dependent methods including trap experiments with legumes to find nitrogen-fixing rhizobia, specialized culture media to determine iron chelation via siderophores and phosphate-solubilizing and cellulase activities; cultivation-independent methods, namely 16S rDNA cloning and sequencing; and also community-level physiological profiling to discover soil microbes associated with the Negev desert perennials Zygophyllum dumosum and Atriplex halimus during the years 2009-2010. • KEY RESULTS We identified a number of PGPB, both epiphytes and endophytes, which fix nitrogen, chelate iron, solubilize phosphate, and secrete cellulase, as well as many other bacteria and some fungi, thereby providing a profile of the microbiomes that support the growth of two desert perennials. • CONCLUSION We generated a snapshot of the microbial communities in the Negev Desert, giving us an insight in its natural state. This desert, like many arid environments, is vulnerable to exploitation for other purposes, including solar energy production and dry land farming.


Bioengineered bugs | 2010

Modular electron transfer circuits for synthetic biology: insulation of an engineered biohydrogen pathway.

Christina M. Agapakis; Pamela A. Silver

Electron transfer is central to a wide range of essential metabolic pathways, from photosynthesis to fermentation. The evolutionary diversity and conservation of proteins that transfer electrons makes these pathways a valuable platform for engineered metabolic circuits in synthetic biology. Rational engineering of electron transfer pathways containing hydrogenases has the potential to lead to industrial scale production of hydrogen as an alternative source of clean fuel and experimental assays for understanding the complex interactions of multiple electron transfer proteins in vivo. We designed and implemented a synthetic hydrogen metabolism circuit in Escherichia coli that creates an electron transfer pathway both orthogonal to and integrated within existing metabolism. The design of such modular electron transfer circuits allows for facile characterization of in vivo system parameters with applications toward further engineering for alternative energy production.


Journal of Biological Engineering | 2012

A BioBrick compatible strategy for genetic modification of plants

Patrick M. Boyle; Devin R. Burrill; Mara C. Inniss; Christina M. Agapakis; Aaron Deardon; Jonathan G dewerd; Michael A Gedeon; Jacqueline Y Quinn; Morgan L Paull; Anugraha M. Raman; Mark Theilmann; Lu Wang; Julia Winn; Oliver Medvedik; Kurt Schellenberg; Karmella A. Haynes; Alain Viel; Tamara Jane Brenner; George M. Church; Jagesh V. Shah; Pamela A. Silver

BackgroundPlant biotechnology can be leveraged to produce food, fuel, medicine, and materials. Standardized methods advocated by the synthetic biology community can accelerate the plant design cycle, ultimately making plant engineering more widely accessible to bioengineers who can contribute diverse creative input to the design process.ResultsThis paper presents work done largely by undergraduate students participating in the 2010 International Genetically Engineered Machines (iGEM) competition. Described here is a framework for engineering the model plant Arabidopsis thaliana with standardized, BioBrick compatible vectors and parts available through the Registry of Standard Biological Parts (http://www.partsregistry.org). This system was used to engineer a proof-of-concept plant that exogenously expresses the taste-inverting protein miraculin.ConclusionsOur work is intended to encourage future iGEM teams and other synthetic biologists to use plants as a genetic chassis. Our workflow simplifies the use of standardized parts in plant systems, allowing the construction and expression of heterologous genes in plants within the timeframe allotted for typical iGEM projects.


Molecular Plant-microbe Interactions | 2016

Symbiotic Burkholderia Species Show Diverse Arrangements of nif/fix and nod Genes and Lack Typical High-Affinity Cytochrome cbb3 Oxidase Genes

Sofie E. De Meyer; Leah Briscoe; Pilar Martínez-Hidalgo; Christina M. Agapakis; Paulina Estrada de-los Santos; Rekha Seshadri; Wayne Reeve; George M. Weinstock; Graham O’Hara; John Howieson; Ann M. Hirsch

Genome analysis of fourteen mimosoid and four papilionoid beta-rhizobia together with fourteen reference alpha-rhizobia for both nodulation (nod) and nitrogen-fixing (nif/fix) genes has shown phylogenetic congruence between 16S rRNA/MLSA (combined 16S rRNA gene sequencing and multilocus sequence analysis) and nif/fix genes, indicating a free-living diazotrophic ancestry of the beta-rhizobia. However, deeper genomic analysis revealed a complex symbiosis acquisition history in the beta-rhizobia that clearly separates the mimosoid and papilionoid nodulating groups. Mimosoid-nodulating beta-rhizobia have nod genes tightly clustered in the nodBCIJHASU operon, whereas papilionoid-nodulating Burkholderia have nodUSDABC and nodIJ genes, although their arrangement is not canonical because the nod genes are subdivided by the insertion of nif and other genes. Furthermore, the papilionoid Burkholderia spp. contain duplications of several nod and nif genes. The Burkholderia nifHDKEN and fixABC genes are very closely related to those found in free-living diazotrophs. In contrast, nifA is highly divergent between both groups, but the papilionoid species nifA is more similar to alpha-rhizobia nifA than to other groups. Surprisingly, for all Burkholderia, the fixNOQP and fixGHIS genes required for cbb3 cytochrome oxidase production and assembly are missing. In contrast, symbiotic Cupriavidus strains have fixNOQPGHIS genes, revealing a divergence in the evolution of two distinct electron transport chains required for nitrogen fixation within the beta-rhizobia.


Diabetologia | 2007

Association testing of common variants in the insulin receptor substrate-1 gene (IRS1) with type 2 diabetes

Jose C. Florez; Marketa Sjögren; Christina M. Agapakis; N. P. Burtt; Peter Almgren; Ulf Lindblad; Göran Berglund; Tiinamaija Tuomi; Daniel Gaudet; Mark J. Daly; Kristin Ardlie; Joel N. Hirschhorn; David Altshuler; Leif Groop

Aims/hypothesisActivation of the insulin receptor substrate-1 (IRS1) is a key initial step in the insulin signalling pathway. Despite several reports of association of the G972R polymorphism in its gene IRS1 with type 2 diabetes, we and others have not observed this association in well-powered samples. However, other nearby variants might account for the putative association signal.Subjects and methodsWe characterised the haplotype map of IRS1 and selected 20 markers designed to capture common variations in the region. We genotyped this comprehensive set of markers in several family-based and case-control samples of European descent totalling 12,129 subjects.ResultsIn an initial sample of 2,235 North American and Polish case-control pairs, the minor allele of the rs934167 polymorphism showed nominal evidence of association with type 2 diabetes (odds ratio [OR] 1.25, 95% CI 1.03–1.51, p = 0.03). This association showed a trend in the same direction in 7,659 Scandinavian samples (OR 1.16, 95% CI 0.96–1.39, p = 0.059). The combined OR was 1.20 (p = 0.008), but statistical correction for the number of variants examined yielded a p value of 0.086. We detected no differences across rs934167 genotypes in insulin-related quantitative traits.Conclusions/interpretationOur data do not support an association of common variants in IRS1 with type 2 diabetes in populations of European descent.


Current Opinion in Chemical Biology | 2012

Smelling in multiple dimensions.

Christina M. Agapakis; Sissel Tolaas

Smell is perhaps the most subjective of the human senses, making odors difficult to measure and define. In everyday language, in the philosophy of aesthetics, and in the lab, this low opinion of odors means that smells are often characterized simply along an axis of good or bad. Odors and the ways they are perceived, however, are varied and incredibly complex, requiring an understanding of chemistry, neuroscience, aesthetics, and social science. Science and art that engage the sense of smell have the potential to expand our understanding of how biology and chemistry interact.

Collaboration


Dive into the Christina M. Agapakis's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ann M. Hirsch

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge