Patrick M. Holligan
National Oceanography Centre, Southampton
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Patrick M. Holligan.
Deep-sea Research Part I-oceanographic Research Papers | 2000
Emilio Marañón; Patrick M. Holligan; Manuel Varela; Beatriz Mouriño; A.J. Bale
The latitudinal distributions of phytoplankton biomass, composition and production in the Atlantic Ocean were determined along a 10,000-km transect from 50°N to 50°S in October 1995, May 1996 and October 1996. Highest levels of euphotic layer-integrated chlorophyll a (Chl a) concentration (75–125xa0mgxa0Chlxa0m−2) were found in North Atlantic temperate waters and in the upwelling region off NW Africa, whereas typical Chl a concentrations in oligotrophic waters ranged from 20 to 40xa0mgxa0Chlxa0m−2. The estimated concentration of surface phytoplankton carbon (C) biomass was 5–15xa0mgxa0Cxa0m−2 in the oligotrophic regions and increased over 40xa0mgxa0Cxa0m−2 in richer areas. The deep chlorophyll maximum did not seem to constitute a biomass or productivity maximum, but resulted mainly from an increase in the Chl a to C ratio and represented a relatively small contribution to total integrated productivity. Primary production rates varied from 50xa0mgxa0Cxa0m−2xa0d−1 at the central gyres to 500–1000xa0mgxa0Cxa0m−2xa0d−1 in upwelling and higher latitude regions, where faster growth rates (μ) of phytoplankton (>0.5xa0d−1) were also measured. In oligotrophic waters, microalgal growth was consistently slow [surface μ averaged 0.21±0.02xa0d−1 (mean±SE)], representing <20% of maximum expected growth. These results argue against the view that the subtropical gyres are characterized by high phytoplankton turnover rates. The latitudinal variations in μ were inversely correlated to the changes in the depth of the nitracline and positively correlated to those of the integrated nitrate concentration, supporting the case for the role of nutrients in controlling the large-scale distribution of phytoplankton growth rates. We observed a large degree of temporal variability in the phytoplankton dynamics in the oligotrophic regions: productivity and growth rates varied in excess of 8-fold, whereas microalgal biomass remained relatively constant. The observed spatial and temporal variability in the biomass specific rate of photosynthesis is at least three times larger than currently assumed in most satellite-based models of global productivity.
Progress in Oceanography | 2000
Jim Aiken; Nw Rees; Stanford B. Hooker; Patrick M. Holligan; A.J. Bale; David B. Robins; Gerald Moore; Roger P. Harris; Da Pilgrim
The Atlantic Meridional Transect programme uses the twice-annual passage of the RRS James Clark Ross between the UK and the Falkland Islands, before and after the Antarctic research programme in the Austral Summer (see Aiken, J., & Bale, A. J. (2000). An introduction to the Atlantic Meridional Transect (AMT) Programme. Progress in Oceanography, this issue). This paper examines the scientific rationale for a spatially-extensive time and space series programme and reviews the relevant physical and biological oceanography of the Atlantic Ocean. The main scientific observations from the research programme are reported. These are set in the context of historical and contemporary observations pertinent to the principal objectives of the cruise, notably the satellite remotely sensed observations of ocean properties. The extent to which the programme goals have been realised by the research to date is assessed and discussed. New bio-optical signatures, which can be related to productivity parameters, have been derived. These can be used to interpret remotely sensed observations of ocean colour in terms of productivity and production processes such as the air/sea exchange of biogenic gases, which relate to the issues of climate change and the sustainability of marine ecosystems.
Progress in Oceanography | 2000
Stuart W. Gibb; R.G. Barlow; Denise Cummings; Nw Rees; Patrick M. Holligan; David J. Suggett
Abstract We present an overview of the spatial distributions of phytoplankton pigments along transects between the UK and the Falkland Islands. These studies, undertaken as a component of the UK Atlantic Meridional Transect (AMT) programme, provided the first post-launch validation data for the NASA SeaWiFS satellite. Pigment data are used to characterise basin-scale variations in phytoplankton biomass and community composition over 100° of latitude, and to compliment the definition of hydrographic oceanic provinces. A summary of the key pigment characteristics of each province is presented. Concentrations of total chlorophyll a (totCHLaxa0=xa0chlorophyll a, CHLaxa0+xa0divinyl CHLa, dvCHLa) were greatest in high latitude temperate waters (>37°N and >35°S), and in the Canary Current Upwelling system. In these regions, the total carotenoid (totCAR) budget was dominated by photosynthetic carotenoids (PSCs). High accessory pigment diversity was observed of which fucoxanthin (FUC), 19–hexanoyloxyfucoxanthin (HEX), and diadinoxanthin (DIAD) were most abundant, indicating proliferation of large eukaryotes and nanoflagellates. In contrast, tropical and sub-tropical waters exhibited concentrations of totCHLa below 500 ng l−1, with the North Atlantic Sub-tropical East gyre (NASE, 26.7–35°N), South Equatorial Current (SeqC, 7–14.6°S) and South Atlantic tropical Gyre (SATG, 14.6–26°S) characterised by totCHLa of 15°C, and between the extremes of 48°N and 42°S. DvCHLa accounted for up to two-thirds of totCHLa in oligotrophic provinces demonstrating the importance of prochlorophytes to oceanic biomass. Overall, HEX was the dominant PSC, contributing up to 75% of totCAR. HEX always represented >2% of totCAR and was the only truly ubiquitous carotenoid. Since HEX is a chemotaxonomic marker of prymnesiophytes, this observation reflects the truly cosmopolitan distribution of this algal class. ZEA was found to be the most abundant PPC contributing more than one third of the total carotenoid budget in each transect. Greatest seasonality was observed in highly productive waters at high latitudes and in shallow continental shelf waters and attributed to proliferation of large eukaryotes during spring. Concentrations of the prokaryote pigments (ZEAxa0+xa0dvCHLa) also exhibited some seasonality, with elevated concentrations throughout most of the transect during Northern Hemisphere spring.
Deep-sea Research Part I-oceanographic Research Papers | 2002
R.G. Barlow; Jim Aiken; Patrick M. Holligan; Denise Cummings; S Maritorena; Stanford B. Hooker
Pigment patterns and associated absorption properties of phytoplankton were investigated in the euphotic zone along two meridional transects in the Atlantic Ocean, between the UK and the Falkland Islands, and between South Africa and the UK. Total chlorophyll a (TChla=MVChla+DVChla+chlorophyllide a) concentrations and the biomarker pigments for diatoms (fucoxanthin), nanoflagellates and cyanobacteria (zeaxanthin) appeared to have similar distribution patterns in the spring and in the autumn in the temperate NE Atlantic and the northern oligotrophic gyre. Divinyl chlorophyll a levels (prochlorophytes) were greater in spring at the deep chlorophyll maximum in the oligotrophic gyre, however. Marked seasonal differences were observed in the NW African upwelling region. TChla concentrations were twice as high in the upper mixed layer in the spring, with the community dominated by diatoms and prymnesiophytes (19?-hexanoyloxyfucoxanthin). A layered structure was prevalent in the autumn where cyanobacteria, diatoms and prymnesiophytes were located in the upper water column and diatoms and mixed nanoflagellates at the sub-surface maximum. In the South Atlantic, the Benguela upwelling ecosystem and the Brazil-Falklands Current Confluence Zone (BFCCZ) were the most productive regions with the TChla levels being twice as high in the Benguela. Diatoms dominated the Benguela system, while nanoflagellates were the most ubiquitous group in the BFCCZ. Pigment concentrations were greater along the eastern boundary of the southern oligotrophic gyre and distributed at shallower depths. Deep chlorophyll maxima were a feature of the western boundary oligotrophic waters, and cyanobacteria tended to dominate the upper water column along both transects with a mixed group of nanoflagellates at the chlorophyll maximum. Absorption coefficients were estimated from spectra reconstructed from pigment data. Although absorption was greater in the productive areas, the TChla-specific coefficients were higher in oligotrophic regions. In communities that were dominated by diatoms or nanoflagellates, pigment absorption was generally uniform with depth and attenuating irradiance, with TChla being the major absorbing pigment at 440 nm and photosynthetic carotenoids (PSC) at 490 nm. Absorption by chlorophyll c and photoprotective carotenoids (PPC) was much lower. Populations where cyanobacteria were prevalent were characterized by high PPC absorption, particularly at 490 nm, throughout most of the euphotic zone. The data suggested that the effect of pigments on the variability of phytoplankton absorption was due primarily to the variations in absorption by PPC.
Global Biogeochemical Cycles | 2006
Alex J. Poulton; Richard Sanders; Patrick M. Holligan; Mark C. Stinchcombe; T. R. Adey; Louise Brown; Katie Chamberlain
Organic carbon fluxes to the deep ocean may be enhanced by association with ballast mineral material such as calcite and opal. We made simultaneous measurements of the upper ocean production of calcite (calcification), opal (silicification) and organic carbon (photosynthesis) at 14 stations between 42°S and 49°N in the Atlantic Ocean. These measurements confirm the light-dependency of calcification and photosynthesis, and the substrate dependency of silicification. We estimate that mineralizing phytoplankton represent ~5–20% of organic carbon fixation, with similar contributions from both coccolithophores and diatoms. Estimates of average turnover times for calcite and phytoplankton carbon are ~3 days, indicative of their relatively labile nature. By comparison, average turnover times for opal and particulate organic carbon are ~10 days. Rapid turnover of calcite suggests an important role for the plankton community in removing calcite from the upper ocean. Comparison of our surface production rates to sediment trap data confirms that ~70% of calcite is dissolved in the upper 2–3 km, and only a small proportion of total organic carbon (<2%) reaches the deep ocean.
Geophysical Research Letters | 2009
Jonathan Sharples; C. Mark Moore; Anna E. Hickman; Patrick M. Holligan; Jacqueline F. Tweddle; Matthew R. Palmer; John H. Simpson
We show that a breaking internal tide at a shelf edge is a fundamental control on the structural and functional properties of ecosystems. Contrasts in vertical mixing of nitrate between the shelf and the open ocean correspond with horizontal and vertical changes in phytoplankton communities, with largest cells found in surface waters at the shelf edge. Intense fishing activity is commonly seen at continental shelf edges, targeting spawning fish stocks. We suggest that the internal tide, a globally ubiquitous physical process at steep shelf edge bathymetry, supports shelf edge fisheries by providing large-celled phytoplankton for first-feeding fish larvae. The repeatability of the internal tide removes fish from the need to time spawning with a spring bloom. Also, with large phytoplankton cells dominating particulate organic carbon export, the internal tides could be an important influence on spatial and temporal variability in patterns of global carbon sequestration in deep water and sediments. Citation: Sharples, J., C. M. Moore, A. E. Hickman, P. M. Holligan, J. F. Tweddle, M. R. Palmer, and J. H. Simpson (2009), Internal tidal mixing as a control on continental margin ecosystems, Geophys. Res. Lett., 36, L23603, doi:10.1029/2009GL040683.
Estuarine Coastal and Shelf Science | 2003
P.L. Friend; Michael Collins; Patrick M. Holligan
The majority of investigations that have measured sediment properties related to intertidal sediment stability have been undertaken during daylight subaerial exposure periods. As a consequence, models based upon such data represent only partially the intertidal flat surface conditions within any 24 h period. n nIn this contribution, a comparison is made between surface sediment properties related to sediment stability measured during six consecutive (day/night), semi-diurnal subaerial exposure periods, at three stations on an intertidal sand flat in late March 1999. The study site was selected on the basis of its suitability for sampling and data collection at night, with special regard to safety and logistics. Seawater temperatures ranged from 4.1 to 9.6 °C, and salinities from 33.9 to 34.8. n nEleven parameters related to intertidal flat sediment stability were measured, or derived. These variables included the critical erosion shear stress (τc), chlorophyll a, phaeopigment, and colloidal carbohydrate content, mean grain size and settling velocity of the surface (0–1 mm) sediment fraction. Bed elevation was described using an acretion/erosion parameter (AEP) (West and West 1991), whilst additional physical terms included ambient seawater salinity and temperature, as well as tidal range and wind speed, during the preceding immersion periods. One-way ANOVA was used to detect significant differences between day- and night-time emersion periods; similarly, principal components analysis (PCA) was applied to detect continuous variation between properties. n nThe results show a high degree of temporal and spatial variability between day- and night-time intertidal flat variables, the PCA differentiating clearly between day and night conditions. Surface sediments across the intertidal flat exhibited varying degrees of biostabilisation. The maximum biostabilisation coefficient (18) was recorded at night in high microalgal biomass areas; the minimum (5) occurred during both day and night, in areas with lower microalgal biomass. All surface sediment parameters varied rhythmically between day- and night-time. Significant differences were found between day- and night-time biostabilisation coefficients, however, differences between day- and night-time τc values were not detected. It is suggested that sediment stability at night is enhanced in high microalgal biomass areas as a result of degradation products from bound extra-cellular polysaccharides (EPS) not easily detected using standard extraction procedures.
Global Biogeochemical Cycles | 2008
Sandy J. Thomalla; Alex J. Poulton; Richard Sanders; Robert Turnewitsch; Patrick M. Holligan; Mike Lucas
Latitudinal variability in export fluxes and efficiencies (ThE) of calcite, opal, and particulate organic carbon (POC) were examined during a basin-scale Atlantic Ocean cruise. A clear relationship between integrated euphotic zone POC and calcite export combined with similarities in average ThE for calcite (0.26), opal (0.31), and POC (0.29) implies a potential association between biomineral and POC export. However, such similarity conceals substantial uncorrelated variability when ThE values are compared on regional scales, with ThE of POC often being much higher than that of calcite or opal. High-euphotic zone ThE for POC (0.3–0.4) relative to that found in deep sea sediment traps (<0.05) suggests that considerable remineralization occurs below the euphotic zone. We suggest (1) that regional variability in the mechanisms by which biominerals and POC become associated are more important in determining the efficient export of organic carbon than that of ballast materials; and (2) that, because of the preferential remineralization of POC relative to calcite/opal dissolution during subeuphotic processes, the potential for effective ballasting increases with depth in the water column.
Geophysical Research Letters | 2010
William M. Balch; Bruce C. Bowler; Dave T. Drapeau; Alex J. Poulton; Patrick M. Holligan
[1]xa0Particulate inorganic carbon (PIC; calcium carbonate) is thought to be a significant source of light scattering in the sea. It also provides ballast for particulate matter, driving the oceans biological carbon pump. During three trans-Atlantic cruises, we measured particle optical properties plus concentrations of the three major components of sinking aggregates [particulate organic carbon (POC), PIC and biogenic silica (BSi)]. PIC contributed 15–23% of particle backscattering in oligotrophic subtropical gyres and temperate waters. Light scattering properties allowed quantification of the surface PIC:POC ratio. The ratio of the two ballast minerals (PIC:BSi) was significantly, inversely, correlated to POC concentration, allowing robust modeling of the density of sinking aggregates. Results showed greater PIC:POC ratios and sinking rates in oligotrophic regions due to greater relative abundance of PIC.
Geobiology | 2007
P.L. Friend; Cathy H. Lucas; Patrick M. Holligan; Michael Collins
The interaction between physical and biological factors responsible for the cessation of ripple migration on a sandy intertidal flat was examined during a microalgal bloom period in late winter/early spring, as part of a wider study into the biostabilisation of intertidal sediments. Ripple positions and ripple geometry were monitored, and surface sediment was sampled, at weekly intervals over a 5-week period. Ripples remained in the same position for at least 4 weeks, during which time there was a progressive reduction in bedform height (smoothing) and deposition of some 1.5 cm sediment, mainly in the ripple troughs (surface levelling). The mean chlorophyll a (chl a) sediment content was 6.0 microg gDW(-1) (DW: dry weight) (0-1 mm depth fraction), with a maximum value of 7.4 microg gDW(-1) half way through the bloom. Mean colloidal-S carbohydrate (S: saline extraction) content was 131 microg GE gDW(-1) (GE: glucose equivalent) (0-1 mm), with a maximum of 261 microg GE gDW(-1 )towards the end of the bloom. Important accessory pigments were peridinin (indicative of dinophytes) and fucoxanthin (diatoms). Stepwise multiple regression showed that peridinin was the best predictor of chl a. For the first time, in situ evidence for the mediation of (wave) ripple migration by microalgae is provided. Results indicate that diatoms, and quite possibly dinophytes, can have a significant effect on intertidal flat ripple mobility on a temporal scale of weeks. In addition, microalgal effects appear capable of effecting a reduction in bed roughness on a spatial scale of up to 10(-2 )m, with a subsequent reduction in bottom stress and bed erodability. It is suggested that a unique combination of environmental conditions, in conjunction with the microalgal bloom(s), promoted the initial cessation of ripple movement, and that stationary-phase, diatom-derived extracellular polymeric substances (EPS) (and possibly dinophyte-derived EPS) may have prolonged the condition. It is reasonable to suppose that ripple stabilisation by similar processes may have contributed to ripple mark preservation in the geological record. A conceptual model of sandy intertidal flat processes is presented, illustrating two conditions: (i) a low EPS/microalgae sediment content with low ripple stabilisation and preservation potential; and (ii) a high EPS/microalgae content with higher preservation potential.