Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Timothy D. Jickells is active.

Publication


Featured researches published by Timothy D. Jickells.


Global Biogeochemical Cycles | 1991

The atmospheric input of trace species to the world ocean

Robert A. Duce; Peter S. Liss; J. T. Merrill; E. L. Atlas; P. Buat‐Menard; B. B. Hicks; J. M. Miller; Joseph M. Prospero; Richard Arimoto; Thomas M. Church; W. G. Ellis; James N. Galloway; L. Hansen; Timothy D. Jickells; Anthony H. Knap; K. H. Reinhardt; B. Schneider; A. Soudine; J. J. Tokos; S. Tsunogai; Roland Wollast; M. Zhou

Over the past decade it has become apparent that the atmosphere is a significant pathway for the transport of many natural and pollutant materials from the continents to the ocean. The atmospheric input of many of these species can have an impact (either positive or negative) on biological processes in the sea and on marine chemical cycling. For example, there is now evidence that the atmosphere may be an important transport path for such essential nutrients as iron and nitrogen in some regions. In this report we assess current data in this area, develop global scale estimates of the atmospheric fluxes of trace elements, mineral aerosol, nitrogen species, and synthetic organic compounds to the ocean; and compare the atmospheric input rates of these substances to their input via rivers. Trace elements considered were Pb, Cd, Zn, Cu, Ni, As, Hg, Sn, Al, Fe, Si, and P. Oxidized and reduced forms of nitrogen were considered, including nitrate and ammonium ions and the gaseous species NO, NO2, HNO3, and NH3. Synthetic organic compounds considered included polychlorinated biphenyls (PCBs), hexachlorocyclohexanes (HCHs), DDTs, chlordane, dieldrin, and hexachlorobenzenes (HCBs). Making this assessment was difficult because there are very few actual measurements of deposition rates of these substances to the ocean. However, there are considerably more data on the atmospheric concentrations of these species in aerosol and gaseous form. Mean concentration data for 10° × 10° ocean areas were determined from the available concentration data or from extrapolation of these data into other regions. These concentration distributions were then combined with appropriate exchange coefficients and precipitation fields to obtain the global wet and dry deposition fluxes. Careful consideration was given to atmospheric transport processes as well as to removal mechanisms and the physical and physicochemical properties of aerosols and gases. Only annual values were calculated. On a global scale atmospheric inputs are generally equal to or greater than riverine inputs, and for most species atmospheric input to the ocean is significantly greater in the northern hemisphere than in the southern hemisphere. For dissolved trace metals in seawater, global atmospheric input dominates riverine input for Pb, Cd, and Zn, and the two transport paths are roughly equal for Cu, Ni, As, and Fe. Fluxes and basin-wide deposition of trace metals are generally a factor of 5-10 higher in the North Atlantic and North Pacific regions than in the South Atlantic and South Pacific. Global input of oxidized and reduced nitrogen species are roughly equal to each other, although the major fraction of oxidized nitrogen enters the ocean in the northern hemisphere, primarily as a result of pollution sources. Reduced nitrogen species are much more uniformly distributed, suggesting that the ocean itself may be a significant source. The global atmospheric input of such synthetic organic species as HCH,PCBs, DDT, and HCB completely dominates their input via rivers.


Science | 2008

Impacts of Atmospheric Anthropogenic Nitrogen on the Open Ocean

Robert A. Duce; Julie LaRoche; Katye E. Altieri; Kevin R. Arrigo; Alex R. Baker; Douglas G. Capone; Sarah Cornell; Frank Dentener; James N. Galloway; Raja Ganeshram; Richard J. Geider; Timothy D. Jickells; Marcel M. M. Kuypers; Rebecca Langlois; Peter S. Liss; S. M. Liu; Jack J. Middelburg; C. M. Moore; Slobodan Nickovic; Andreas Oschlies; Thomas F. Pedersen; Joseph M. Prospero; Reiner Schlitzer; Sybil P. Seitzinger; Lise Lotte Sørensen; Mitsuo Uematsu; Osvaldo Ulloa; Maren Voss; Bess B. Ward

Increasing quantities of atmospheric anthropogenic fixed nitrogen entering the open ocean could account for up to about a third of the oceans external (nonrecycled) nitrogen supply and up to ∼3% of the annual new marine biological production, ∼0.3 petagram of carbon per year. This input could account for the production of up to ∼1.6 teragrams of nitrous oxide (N2O) per year. Although ∼10% of the oceans drawdown of atmospheric anthropogenic carbon dioxide may result from this atmospheric nitrogen fertilization, leading to a decrease in radiative forcing, up to about two-thirds of this amount may be offset by the increase in N2O emissions. The effects of increasing atmospheric nitrogen deposition are expected to continue to grow in the future.


Global Biogeochemical Cycles | 2008

Global distribution of atmospheric phosphorus sources, concentrations and deposition rates, and anthropogenic impacts

Natalie M. Mahowald; Timothy D. Jickells; Alex R. Baker; Paulo Artaxo; Claudia R. Benitez-Nelson; G. Bergametti; Tami C. Bond; Ying Chen; David D. Cohen; Barak Herut; Nilgün Kubilay; Rémi Losno; Chao Luo; Willy Maenhaut; Kenneth A. McGee; Gregory S. Okin; Ronald L. Siefert; Seigen Tsukuda

A worldwide compilation of atmospheric total phosphorus (TP) and phosphate (PO4) concentration and deposition flux observations are combined with transport model simulations to derive the global distribution of concentrations and deposition fluxes of TP and PO4. Our results suggest that mineral aerosols are the dominant source of TP on a global scale (82%), with primary biogenic particles (12%) and combustion sources (5%) important in nondusty regions. Globally averaged anthropogenic inputs are estimated to be similar to 5 and 15% for TP and PO4, respectively, and may contribute as much as 50% to the deposition over the oligotrophic ocean where productivity may be phosphorus-limited. There is a net loss of TP from many (but not all) land ecosystems and a net gain of TP by the oceans (560 Gg P a(-1)). More measurements of atmospheric TP and PO4 will assist in reducing uncertainties in our understanding of the role that atmospheric phosphorus may play in global biogeochemistry.


Atmospheric Environment | 2003

Organic nitrogen deposition on land and coastal environments: a review of methods and data

Sarah Cornell; Timothy D. Jickells; J.N. Cape; A. P. Rowland; Robert A. Duce

Despite over a century of published reports of dissolved organic nitrogen (DON) in precipitation, its implications are still being appraised. The number of studies focusing on atmospheric organic nitrogen deposition has increased steadily in recent years, but comparatively little has been done to draw together this disparate knowledge. This is partly a consequence of valid concerns about the comparability of analysis and sampling methodologies. Given the current global trends in anthropogenic nitrogen fixation, an improved qualitative and quantitative understanding of the organic nitrogen component is needed to complement the well-established knowledge base pertaining to nitrate and ammonium deposition. This global review confirms the quantitative importance of bulk DON in precipitation. This cumulative data set also helps to resolve some of the uncertainty that arises from the generally locally and temporally limited scale of the individual studies. Because of analytical and procedural changes in recent decades, assessments are made of the comparability of the data sets; caution is needed in comparisons of individual studies, but the overall trends in the compiled set are more robust. Despite the large number of reports considered, evidence for long-term temporal changes in rainwater organic nitrogen concentrations is ambiguous. With regard to sources, it is likely that some of the organic material observed is not locally generated, but undergoes extensive or long-range atmospheric transport. The compiled data set shows a land-to-sea gradient in organic nitrogen concentration. Possible precursors, reported data on the most likely component groups, and potential source mechanisms are also outlined.


Nature | 2009

Southern Ocean deep-water carbon export enhanced by natural iron fertilization

R.T. Pollard; Ian Salter; Richard Sanders; Mike Lucas; C. Mark Moore; Rachel A. Mills; Peter J. Statham; John T. Allen; Alex R. Baker; Dorothee C. E. Bakker; Matthew A. Charette; Sophie Fielding; Gary R. Fones; M. French; Anna E. Hickman; Ross J. Holland; J. Alan Hughes; Timothy D. Jickells; Richard S. Lampitt; Paul J. Morris; Florence Nédélec; Maria C. Nielsdóttir; Hélène Planquette; E. E. Popova; Alex J. Poulton; J.F. Read; Sophie Seeyave; Tania Smith; Mark Stinchcombe; Sarah L. Taylor

The addition of iron to high-nutrient, low-chlorophyll regions induces phytoplankton blooms that take up carbon. Carbon export from the surface layer and, in particular, the ability of the ocean and sediments to sequester carbon for many years remains, however, poorly quantified. Here we report data from the CROZEX experiment in the Southern Ocean, which was conducted to test the hypothesis that the observed north–south gradient in phytoplankton concentrations in the vicinity of the Crozet Islands is induced by natural iron fertilization that results in enhanced organic carbon flux to the deep ocean. We report annual particulate carbon fluxes out of the surface layer, at three kilometres below the ocean surface and to the ocean floor. We find that carbon fluxes from a highly productive, naturally iron-fertilized region of the sub-Antarctic Southern Ocean are two to three times larger than the carbon fluxes from an adjacent high-nutrient, low-chlorophyll area not fertilized by iron. Our findings support the hypothesis that increased iron supply to the glacial sub-Antarctic may have directly enhanced carbon export to the deep ocean. The CROZEX sequestration efficiency (the amount of carbon sequestered below the depth of winter mixing for a given iron supply) of 8,600 mol mol-1 was 18 times greater than that of a phytoplankton bloom induced artificially by adding iron, but 77 times smaller than that of another bloom initiated, like CROZEX, by a natural supply of iron. Large losses of purposefully added iron can explain the lower efficiency of the induced bloom6. The discrepancy between the blooms naturally supplied with iron may result in part from an underestimate of horizontal iron supply.


Marine Chemistry | 1995

Atmospheric inputs of metals and nutrients to the oceans: their magnitude and effects

Timothy D. Jickells

Abstract The estimates of atmospheric inputs of metals and nutrients to the oceans and some coastal areas are reviewed and the uncertainties in these estimates considered. The evidence that these inputs significantly modify oceanic chemistry is presented. However, there are still major uncertainties in our understanding of the interactions between the atmosphere and the ocean for these elements. Two of these areas of uncertainty, atmospheric deposition processes and the ecological effects of atmospheric inputs, are considered in detail.


Deep-sea Research Part I-oceanographic Research Papers | 2003

Atmospheric iron deposition and sea-surface dissolved iron concentrations in the eastern Atlantic Ocean

Géraldine Sarthou; Alex R. Baker; Stéphane Blain; Eric P. Achterberg; Marie Boye; Andrew R. Bowie; Peter Croot; Patrick Laan; Hein J. W. de Baar; Timothy D. Jickells; Paul J. Worsfold

Atmospheric iron and underway sea-surface dissolved (<0.2 μm) iron (DFe) concentrations were investigated along a north-south transect in the eastern Atlantic Ocean (27°N/16°W-19°S/5°E). Fe concentrations in aerosols and dry deposition fluxes of soluble Fe were at least two orders of magnitude higher in the Saharan dust plume than at the equator or at the extreme south of the transect. A weaker source of atmospheric Fe was also observed in the South Atlantic, possibly originating in southern Africa via the north-easterly outflow of the Angolan plume. Estimations of total atmospheric deposition fluxes (dry plus wet) of soluble Fe suggested that wet deposition dominated in the intertropical convergence zone, due to the very high amount of precipitation and to the fact that a substantial part of Fe was delivered in dissolved form. On the other hand, dry deposition dominated in the other regions of the transect (73-97), where rainfall rates were much lower. Underway sea-surface DFe concentrations ranged 0.02-1.1 nM. Such low values (0.02 nM) are reported for the first time in the Atlantic Ocean and may be (co)-limiting for primary production. A significant correlation (Spearmans rho = 0.862, p<0.01) was observed between mean DFe concentrations and total atmospheric deposition fluxes, confirming the importance of atmospheric deposition on the iron cycle in the Atlantic. Residence time of DFe in the surface waters relative to atmospheric inputs were estimated in the northern part of our study area (17 ± 8 to 28 ± 16 d). These values confirmed the rapid removal of Fe from the surface waters, possibly by colloidal aggregation.


Marine Chemistry | 1999

The inputs of dust derived elements to the Sargasso Sea; a synthesis

Timothy D. Jickells

Aluminosilicate mineral aerosol (dust) is traced from its predominant North African source to the Sargasso Sea. The mechanisms of dust production, atmospheric transport and atmospheric transformation are briefly reviewed highlighting the issue of solubilisation during long range transport. The deposition and transformation of dust in the surface ocean are then considered together with estimated upwelling fluxes to derive estimates of the residence time of dissolved and total aluminium, manganese and iron in the euphotic zone of the Sargasso Sea. The flux estimates for dissolved iron are also compared to export production estimates for iron as an independent check.


Deep-sea Research Part I-oceanographic Research Papers | 1994

Temporal and spatial variability of biogenic particles fluxes during the JGOFS northeast Atlantic process studies at 47°N, 20°W

Philip P. Newton; Richard S. Lampitt; Timothy D. Jickells; P. King; Clare Boutle

Particle fluxes to 3100 m depth at 45°50′N, 19°30′W were measured using time-series sediment traps during a 17 month period encompassing 1989 and 1990 JGOFS spring bloom process studies in the northeast Atlantic. There was a marked intra-annual variability in fluxes of mass, particulate inorganic carbon (PIC), particulate organic carbon (POC) and opal, appearing as two major flux events in each year. In 1989, the first flux event represented the settlement of spring bloom-type material, whereas the second, in autumn, was heavily enriched in mucopolysaccharides. In 1990, in contrast, the two flux events comprised spring bloom-type material and arrived at depth at different times relative to the 1989 events. The intra- and interannual variability evident for all three biogenic components was most notable for POC: (i) the autumn 1989 event supplied twice as much POC to 3100 m as the earlier spring bloom settlement—a quite unexpected observation—and (ii) the annual average POC flux in 1989 was 3–4 times more than in 1990. A synthesis of process study datasets with sediment trap data enables an evaluation of the coupling of deep fluxes with surface-water events. Spatial variability of the 1989 deep flux events is assessed by comparing the sediment trap data reported here with those from a second site ∼ 100 km away (Honjo and Manganini,Deep-Sea Research II,40, 587–607, 1993). The timing and magnitude of the 1989 spring bloom settlement was indistinguishable in the two datasets, indicating no spatial variability in flux between these sites. In contrast, the autumn 1989 flux event was barely recorded at the second site. Given the biogeochemical importance of this latter event to deep waters, most notable in terms of its contribution to POC flux, this observation of deep-water mesoscale flux variability indicates a significant problem in determining regional carbon budgets. Construction of basin-scale budgets is a central goal of JGOFS and for this to be achieved further studies of mesoscale variability of particle flux are essential.


Aquatic Geochemistry | 1996

Factors controlling the solubility of aerosol trace metals in the atmosphere and on mixing into seawater

Lucinda J. Spokes; Timothy D. Jickells

Previous work has shown that the type and pH history of an aerosol governs trace metal solubility in rainwater. This study concentrates on the crustal elements Al, Fe and Mn and identifies additional processes which affect dissolution not only in the atmosphere but also on mixing into seawater. Aerosol dissolution experiments (at aerosol concentrations of about 30 mg 1−1) show manganese exhibiting high solubility at the low pH values typical of clouds (54±2.5% at pH 2, with results expressed in mole percent units) with 85% of this increase occurring within 6 hours of acidification. The percentage dissolution decreases to 50% at pH values representative of rainwater (pH 5.5) and to 26±4% at pH 8, typical of seawater. No such dramatic solution phase removal occurs at pH 8 in the presence of inorganic anions (to a final solubility of 44±2%). Thus the extent of manganese dissolution depends strongly on whether aerosols are cycled through acidic environments and on subsequent inorganic complexation once rainwater mixes into sea. Aluminium shows highest dissolution (7.1±0.6%) at low pH with 78% of this increase occurring within 6 hours of acidification. Rapid solution phase removal occurs on increasing the pH to that representative of rainwater (to 0.9±0.4% with 87% of this decrease occurring within 15 min). As a consequence of acid cycling and aluminiums amphoteric nature, solubility is enhanced at seawater pH (2.3±0.3%) over that in rain. Iron shows a strong pH-solubility relationship with highest solubility at low pH (4.7±0.2%), 70% of this value being reached within 6 hours of acidification, and decreasing rapidly to 0.17% as pH is raised to 8. Addition of inorganic anions at pH 8 to simulate mixing into seawater causes a further decrease in solubility, perhaps due to anion induced colloid destabilisation. Photochemical reduction also effects solubility under low pH conditions with Fe(II) comprising 1% of the total iron in the Saharan Aerosol used and 8.4% in an Urban material at a pH of ≈ 2. This element shows rapid solution phase removal with increasing particulate load which is tentatively rationalised in terms of a simple Kd approach.

Collaboration


Dive into the Timothy D. Jickells's collaboration.

Top Co-Authors

Avatar

Alex R. Baker

University of East Anglia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Je Andrews

University of East Anglia

View shared research outputs
Top Co-Authors

Avatar

Peter S. Liss

University of East Anglia

View shared research outputs
Top Co-Authors

Avatar

Keith Weston

University of East Anglia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Karabi F. Biswas

New York State Department of Health

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge