Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Patrick M.J. Kenney is active.

Publication


Featured researches published by Patrick M.J. Kenney.


Cancer Letters | 1999

Evaluation of butylated hydroxyanisole, myo-inositol, curcumin, esculetin, resveratrol and lycopene as inhibitors of benzo[a]pyrene plus 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone-induced lung tumorigenesis in A/J mice

Stephen S. Hecht; Patrick M.J. Kenney; Mingyao Wang; Neil Trushin; Sanjiv Agarwal; A. Venket Rao; Pramod Upadhyaya

The potential activities of butylated hydroxyanisole (BHA), myo-inositol, curcumin, esculetin, resveratrol and lycopene-enriched tomato oleoresin (LTO) as chemopreventive agents against lung tumor induction in A/J mice by the tobacco smoke carcinogens benzo[a]pyrene (BaP) and 4-(methyl-nitrosamino)-1-(3-pyridyl)-1-butanone (NNK) were evaluated. Groups of 20 A/J mice were treated weekly by gavage with a mixture of BaP and NNK (3 micromol each) for 8 weeks, then sacrificed 26 weeks after the first carcinogen treatment. Mice treated with BHA (20 or 40 micromol) by gavage 2 h before each dose of BaP and NNK had significantly reduced lung tumor multiplicity. Treatment with BHA (20 or 40 micromol) by gavage weekly or with dietary BHA (2000 ppm), curcumin (2000 ppm) or resveratrol (500 ppm) from 1 week after carcinogen treatment until termination had no effect on lung tumor multiplicity. Treatment with dietary myo-inositol (30,000 ppm) or esculetin (2000 ppm) from 1 week after carcinogen treatment until termination significantly reduced lung tumor multiplicity, with the effect of myo-inositol being significantly greater than that of esculetin. Treatment with dietary LTO (167, 1667 or 8333 ppm) from 1 week before carcinogen treatment until termination had no effect on lung tumor multiplicity. The results of this study demonstrate that BHA is an effective inhibitor of BaP plus NNK-induced lung tumorigenesis in A/J mice when administered during the period of carcinogen treatment and that, among the compounds tested, myo-inositol is most effective after carcinogen treatment.


Cancer Letters | 2000

Effects of phenethyl isothiocyanate and benzyl isothiocyanate, individually and in combination, on lung tumorigenesis induced in A/J mice by benzo[a]pyrene and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone.

Stephen S. Hecht; Patrick M.J. Kenney; Mingyao Wang; Neil Trushin; Pramod Upadhyaya

Phenethyl isothiocyanate (PEITC) is an effective inhibitor of lung tumorigenesis induced in rats and mice by the tobacco-specific carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) while benzyl isothiocyanate (BITC) inhibits lung tumorigenesis induced in mice by another tobacco smoke carcinogen, benzo[a]pyrene (BaP). However, little is known about the inhibitory effects of PEITC and BITC in combination, or about the effects of PEITC or BITC on tumorigenesis by a mixture of NNK and BaP. In this study, we carried out a series of experiments pertinent to these questions. In Experiment 1, treatment of A/J mice with PEITC (6 micromol), BITC (6 micromol), or a combination of the two (6 micromol each) by gavage, 2 h prior to each of eight weekly gavage treatments with a mixture of BaP and NNK (3 micromol of each), had no effect on lung tumor multiplicity. In Experiment 2, we evaluated the inhibitory potential of four different mixtures of PEITC and BITC, administered by gavage 2 h prior to each of eight weekly doses of BaP and NNK, as given in Experiment 1. Mixtures of PEITC and BITC (12 micromol of each, or 12 micromol PEITC and 9 micromol BITC) significantly reduced lung tumorigenesis induced by a mixture of BaP and NNK. In Experiment 3, we investigated the effects of dietary PEITC (3 micromol/g diet), BITC (1 micromol/g diet), or a mixture of PEITC (3 micromol/g diet) and BITC (1 micromol/g diet). These compounds were started 1 week before, and continued through to 1 week after the eight weekly treatments with BaP and NNK. PEITC, and PEITC plus BITC, both significantly inhibited lung tumor multiplicity; inhibition was due mainly to PEITC. In Experiment 4, we tested dietary PEITC (3, 1, or 0.3 micromol/g diet) as an inhibitor of lung tumorigenesis induced by BaP, NNK, or BaP plus NNK using a protocol identical to that in Experiment 3. PEITC was an effective inhibitor of lung tumor multiplicity induced by NNK and a mixture of BaP plus NNK, but not by BaP. Dietary PEITC, or PEITC plus BITC, was more effective in these experiments than the compounds given by gavage. The results of this study demonstrate that proper doses of dietary PEITC and dietary as well as gavaged PEITC plus BITC are effective inhibitors of lung tumorigenesis induced in A/J mice by a mixture of BaP and NNK.


Cancer Letters | 2002

Benzyl isothiocyanate: an effective inhibitor of polycyclic aromatic hydrocarbon tumorigenesis in A/J mouse lung

Stephen S. Hecht; Patrick M.J. Kenney; Mingyao Wang; Pramod Upadhyaya

Polycyclic aromatic hydrocarbons (PAH) are an important group of carcinogens that are likely to be involved as one of the causes of lung cancer in smokers and occupationally exposed individuals. Previous studies have shown that benzyl isothiocyanate (BITC), administered by gavage, is a good inhibitor of lung tumorigenesis in A/J mice induced by benzo[a]pyrene (BaP), a typical PAH carcinogen. In this study, we evaluated the effects of BITC on lung tumor induction in A/J mice by two other carcinogenic PAH in cigarette smoke - 5-methylchrysene (5-MeC) and dibenz[a,h]anthracene (DBahA). We also compared the effects of BITC with two other well known chemopreventive agents - butylated hydroxyanisole (BHA) and sulforaphane. In experiment 1, groups of A/J mice were treated by gavage once weekly for 8 weeks with BaP (3 micromol) or 5-MeC (2 micromol) or DBahA (1 micromol) in 0.1 ml cottonseed oil. Fifteen minutes before each treatment, the mice were gavaged with 0.1 ml cottonseed oil or 0.1 ml cottonseed oil containing 13.4 micromol or 6.7 micromol of BITC. The experiment was terminated 19 weeks after the final carcinogen treatment. BITC significantly reduced lung tumor multiplicity in all PAH-treated groups by 63.5-90.6%. In experiment 2, groups of A/J mice were treated with BaP or BITC and BaP as in experiment 1, or with BHA or sulforaphane at doses equimolar to those of BITC. BITC was significantly more effective as an inhibitor of lung tumor induction than either BHA or sulforaphane. These results firmly establish gavaged BITC as a strong inhibitor of lung tumorigenesis induced in A/J mice by PAH, and support its further development for chemoprevention of smoking-induced lung cancer.


Cancer Letters | 2001

Dose–response study of myo-inositol as an inhibitor of lung tumorigenesis induced in A/J mice by benzo[a]pyrene and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone

Stephen S. Hecht; Patrick M.J. Kenney; Mingyao Wang; Pramod Upadhyaya

Dietary myo-inositol is an effective inhibitor of lung tumor induction in mice, but no dose–response studies have been reported. We assessed the ability of various doses of dietary myo-inositol to inhibit lung tumor induction in female A/J mice treated with eight weekly doses of benzo[a]pyrene (BaP) plus 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) (3 μmol of each by gavage), then killed 18 weeks later. In Expt. 1, groups of 20 mice each were treated with myo-inositol at concentrations of 1, 0.5, 0.25, 0.125, 0.0625, 0.03125, and 0% in AIN-93 diet for 1 week prior to, during, and for 1 week after the carcinogen administration period. In Expt. 2, groups of 20 mice each were treated with the same concentrations of myo-inositol in the diet as in Expt. 1, except this diet was administered from 1 week after carcinogen administration until termination. There were no effects of myo-inositol on lung tumor incidence, which was 100% in all groups treated with BaP plus NNK. However, myo-inositol significantly decreased lung tumor multiplicity in both experiments. In Expt. 1, significant reductions of 28.9 and 33.0% were observed at the 1 and 0.5% doses of myo-inositol, but not at the lower doses. In Expt. 2, a significant reduction of 48.4% was observed at the 1% dose. In both Expts. 1 and 2, there was a significant dose trend for inhibition (P<0.0001). No toxicity was observed at any dose. These results firmly establish myo-inositol as a chemopreventive agent against lung tumor induction in A/J mice, at doses that can be envisioned for human use.


Carcinogenesis | 2002

Inhibition of lung tumorigenesis in A/J mice by N-acetyl-S-(N-2- phenethylthiocarbamoyl)-L-cysteine and myo-inositol, individually and in combination

Stephen S. Hecht; Pramod Upadhyaya; Mingyao Wang; Robin L. Bliss; Edward J. McIntee; Patrick M.J. Kenney


Carcinogenesis | 1999

Tumorigenicity and metabolism of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol enantiomers and metabolites in the A/J mouse

Pramod Upadhyaya; Patrick M.J. Kenney; J. Bradley Hochalter; Mingyao Wang; Stephen S. Hecht


Cancer Epidemiology, Biomarkers & Prevention | 2004

Effects of Cruciferous Vegetable Consumption on Urinary Metabolites of the Tobacco-Specific Lung Carcinogen 4-(Methylnitrosamino)-1-(3-Pyridyl)-1-Butanone in Singapore Chinese

Stephen S. Hecht; Steven G. Carmella; Patrick M.J. Kenney; Siew Hong Low; Kazuko Arakawa; Mimi C. Yu


Carcinogenesis | 2000

Effects of benzyl isothiocyanate and phenethyl isothiocyanate on benzo[a]pyrene metabolism and DNA adduct formation in the A/J mouse

Kristina R.K. Sticha; Marianne E. Staretz; Mingyao Wang; Hong Liang; Patrick M.J. Kenney; Stephen S. Hecht


Carcinogenesis | 2003

Effects of benzyl isothiocyanate and 2-phenethyl isothiocyanate on benzo(a)pyrene and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone metabolism in F-344 rats

Gunnar Boysen; Patrick M.J. Kenney; Pramod Upadhyaya; Mingyao Wang; Stephen S. Hecht


Carcinogenesis | 2002

Effects of benzyl isothiocyanate and phenethyl isothiocyanate on DNA adduct formation by a mixture of benzo[a]pyrene and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone in A/J mouse lung

Kristina R.K. Sticha; Patrick M.J. Kenney; Gunnar Boysen; Hong Liang; Xiaojing Su; Mingyao Wang; Pramod Upadhyaya; Stephen S. Hecht

Collaboration


Dive into the Patrick M.J. Kenney's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mingyao Wang

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gunnar Boysen

University of Arkansas for Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Hong Liang

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lisa A. Peterson

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Neil Trushin

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge