Patrick O. McGowan
University of Toronto
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Patrick O. McGowan.
Nature Neuroscience | 2009
Patrick O. McGowan; Aya Sasaki; Ana C. D'Alessio; Sergiy Dymov; Benoit Labonté; Moshe Szyf; Gustavo Turecki; Michael J. Meaney
Maternal care influences hypothalamic-pituitary-adrenal (HPA) function in the rat through epigenetic programming of glucocorticoid receptor expression. In humans, childhood abuse alters HPA stress responses and increases the risk of suicide. We examined epigenetic differences in a neuron-specific glucocorticoid receptor (NR3C1) promoter between postmortem hippocampus obtained from suicide victims with a history of childhood abuse and those from either suicide victims with no childhood abuse or controls. We found decreased levels of glucocorticoid receptor mRNA, as well as mRNA transcripts bearing the glucocorticoid receptor 1F splice variant and increased cytosine methylation of an NR3C1 promoter. Patch-methylated NR3C1 promoter constructs that mimicked the methylation state in samples from abused suicide victims showed decreased NGFI-A transcription factor binding and NGFI-A–inducible gene transcription. These findings translate previous results from rat to humans and suggest a common effect of parental care on the epigenetic regulation of hippocampal glucocorticoid receptor expression.
PLOS ONE | 2011
Patrick O. McGowan; Matthew Suderman; Aya Sasaki; Tony C. T. Huang; Michael Hallett; Michael J. Meaney; Moshe Szyf
Background Maternal care is associated with long-term effects on behavior and epigenetic programming of the NR3C1 (GLUCOCORTICOID RECEPTOR) gene in the hippocampus of both rats and humans. In the rat, these effects are reversed by cross-fostering, demonstrating that they are defined by epigenetic rather than genetic processes. However, epigenetic changes at a single gene promoter are unlikely to account for the range of outcomes and the persistent change in expression of hundreds of additional genes in adult rats in response to differences in maternal care. Methodology/Principal Findings We examine here using high-density oligonucleotide array the state of DNA methylation, histone acetylation and gene expression in a 7 million base pair region of chromosome 18 containing the NR3C1 gene in the hippocampus of adult rats. Natural variations in maternal care are associated with coordinate epigenetic changes spanning over a hundred kilobase pairs. The adult offspring of high compared to low maternal care mothers show epigenetic changes in promoters, exons, and gene ends associated with higher transcriptional activity across many genes within the locus examined. Other genes in this region remain unchanged, indicating a clustered yet specific and patterned response. Interestingly, the chromosomal region containing the protocadherin-α, -β, and -γ (Pcdh) gene families implicated in synaptogenesis show the highest differential response to maternal care. Conclusions/Significance The results suggest for the first time that the epigenetic response to maternal care is coordinated in clusters across broad genomic areas. The data indicate that the epigenetic response to maternal care involves not only single candidate gene promoters but includes transcriptional and intragenic sequences, as well as those residing distantly from transcription start sites. These epigenetic and transcriptional profiles constitute the first tiling microarray data set exploring the relationship between epigenetic modifications and RNA expression in both protein coding and non-coding regions across a chromosomal locus in the mammalian brain.
PLOS ONE | 2008
Patrick O. McGowan; Aya Sasaki; Tony C. T. Huang; Alexander Unterberger; Matthew Suderman; Carl Ernst; Michael J. Meaney; Gustavo Turecki; Moshe Szyf
Background Alterations in gene expression in the suicide brain have been reported and for several genes DNA methylation as an epigenetic regulator is thought to play a role. rRNA genes, that encode ribosomal RNA, are the backbone of the protein synthesis machinery and levels of rRNA gene promoter methylation determine rRNA transcription. Methodology/Principal Findings We test here by sodium bisulfite mapping of the rRNA promoter and quantitative real-time PCR of rRNA expression the hypothesis that epigenetic differences in critical loci in the brain are involved in the pathophysiology of suicide. Suicide subjects in this study were selected for a history of early childhood neglect/abuse, which is associated with decreased hippocampal volume and cognitive impairments. rRNA was significantly hypermethylated throughout the promoter and 5′ regulatory region in the brain of suicide subjects, consistent with reduced rRNA expression in the hippocampus. This difference in rRNA methylation was not evident in the cerebellum and occurred in the absence of genome-wide changes in methylation, as assessed by nearest neighbor. Conclusions/Significance This is the first study to show aberrant regulation of the protein synthesis machinery in the suicide brain. The data implicate the epigenetic modulation of rRNA in the pathophysiology of suicide.
Neurobiology of Disease | 2010
Patrick O. McGowan; Moshe Szyf
An organisms behavioral and physiological and social milieu influence and are influenced by the epigenome, which is composed predominantly of chromatin and the covalent modification of DNA by methylation. Epigenetic patterns are sculpted during development to shape the diversity of gene expression programs in the organism. In contrast to the genetic sequence, which is determined by inheritance and is virtually identical in all tissues, the epigenetic pattern varies from cell type to cell type and is potentially dynamic throughout life. It is postulated here that different environmental exposures, including early parental care, could impact epigenetic patterns, with important implications for mental health in humans. Because epigenetic programming defines the state of expression of genes, epigenetic differences could have the same consequences as genetic polymorphisms. Yet in contrast to genetic sequence differences, epigenetic alterations are potentially reversible. This review will discuss basic epigenetic mechanisms and how epigenetic processes early in life might play a role in defining inter-individual trajectories of human behavior. In this regard, we will examine evidence for the possibility that epigenetic mechanisms can contribute to later-onset neurological dysfunction and disease.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Matthew Suderman; Patrick O. McGowan; Aya Sasaki; Tony C. T. Huang; Michael Hallett; Michael J. Meaney; Gustavo Turecki; Moshe Szyf
Early life experience is associated with long-term effects on behavior and epigenetic programming of the NR3C1 (GLUCOCORTICOID RECEPTOR) gene in the hippocampus of both rats and humans. However, it is unlikely that such effects completely capture the evolutionarily conserved epigenetic mechanisms of early adaptation to environment. Here we present DNA methylation profiles spanning 6.5 million base pairs centered at the NR3C1 gene in the hippocampus of humans who experienced abuse as children and nonabused controls. We compare these profiles to corresponding DNA methylation profiles in rats that received differential levels of maternal care. The profiles of both species reveal hundreds of DNA methylation differences associated with early life experience distributed across the entire region in nonrandom patterns. For instance, methylation differences tend to cluster by genomic location, forming clusters covering as many as 1 million bases. Even more surprisingly, these differences seem to specifically target regulatory regions such as gene promoters, particularly those of the protocadherin α, β, and γ gene families. Beyond these high-level similarities, more detailed analyses reveal methylation differences likely stemming from the significant biological and environmental differences between species. These results provide support for an analogous cross-species epigenetic regulatory response at the level of the genomic region to early life experience.
Brain Research | 2008
Patrick O. McGowan; Michael J. Meaney; Moshe Szyf
Phenotypic diversity is shaped by both genetic and epigenetic mechanisms that program tissue specific patterns of gene expression. Cells, including neurons, undergo massive epigenetic reprogramming during development through modifications to chromatin structure, and by covalent modifications of the DNA through methylation. There is evidence that these changes are sensitive to environmental influences such as maternal behavior and diet, leading to sustained differences in phenotype. For example, natural variations in maternal behavior in the rat that influence stress reactivity in offspring induce long-term changes in gene expression, including in the glucocorticoid receptor, that are associated with altered histone acetylation, DNA methylation, and NGFI-A transcription factor binding. These effects can be reversed by early postnatal cross-fostering, and by pharmacological manipulations in adulthood, including Trichostatin A (TSA) and L-methionine administration, that influence the epigenetic status of critical loci in the brain. Because levels of methionine are influenced by diet, these effects suggest that diet could contribute significantly to this behavioral plasticity. Recent data suggest that similar mechanisms could influence human behavior and mental health. Epidemiological data suggest indeed that dietary changes in methyl contents could affect DNA methylation and gene expression programming. Nutritional restriction during gestation could affect epigenetic programming in the brain. These findings provide evidence for a stable yet dynamic epigenome capable of regulating phenotypic plasticity through epigenetic programming.
Neuroscience | 2013
Aya Sasaki; W.C. de Vega; Sophie St-Cyr; Pauline Pan; Patrick O. McGowan
Maternal obesity carries significant health risks for offspring that manifest later in life, including metabolic syndrome, cardiovascular disease and affective disorders. Programming of the hypothalamic-pituitary-adrenal (HPA) axis during development mediates both metabolic homeostasis and the response to psychosocial stress in offspring. A diet high in fat alters maternal systemic corticosterone levels, but effects in offspring on limbic brain areas regulating the HPA axis and anxiety behavior are poorly understood. In addition to their role in the response to psychosocial stress, corticosteroid receptors form part of the glucocorticoid signaling pathway comprising downstream inflammatory processes. Increased systemic inflammation is a hallmark of high-fat diet exposure, though altered expression of these genes in limbic brain areas has not been examined. We studied the influence of high-fat diet exposure during pre-weaning development in rats on gene expression in the amygdala and hippocampus by quantitative real-time polymerase chain reaction (PCR), anxiety behavior in the Open field, elevated plus maze and light-dark transition tasks, and corticosterone levels in response to stress by radioimmunoassay. As adults, offspring exposed to perinatal high-fat diet show increased expression of corticosterone receptors in the amygdala and altered pro-inflammatory and anti-inflammatory expression in the hippocampus and amygdala in genes known to be regulated by the glucocorticoid receptor. These changes were associated with increased anxiety behavior, decreased basal corticosterone levels and a slower return to baseline levels following a stress challenge. The data indicate that the dietary environment during development programs glucocorticoid signaling pathways in limbic areas relevant for the regulation of HPA function and anxiety behavior.
Environmental Health and Preventive Medicine | 2008
Patrick O. McGowan; Tadafumi Kato
Depression develops as an interaction between stress and an individual’s vulnerability to stress. The effect of early life stress and a gene–environment interaction may play a role in the development of stress vulnerability as a risk factor for depression. The epigenetic regulation of the promoter of the glucocorticoid receptor gene has been suggested as a molecular basis of such stress vulnerability. It has also been suggested that antidepressive treatment, such as antidepressant medication and electroconvulsive therapy, may be mediated by histone modification on the promoter of the brain-derived neurotrophic factor gene. Clinical genetic studies in bipolar disorder suggest the role of genomic imprinting, although no direct molecular evidence of this has been reported. The role of DNA methylation in mood regulation is indicated by the antimanic effect of valproate, a histone deacetylase inhibitor, and the antidepressive effect of S-adenosyl methionine, a methyl donor in DNA methylation. Studies of postmortem brains of patients have implicated altered DNA meA methylation of the promoter region of membrane-bound catechol-O-methyltransferase in bipolar disorder. An altered DNA methylation status of PPIEL (peptidylprolyl isomerase E-like) was found in a pair of monozygotic twins discordant for bipolar disorder. Hypomethylation of PPIEL was also found in patients with bipolar II disorder in a case control analysis. These fragmentary findings suggest the possible role of epigenetics in mood disorders. Further studies of epigenetics in mood disorders are warranted.
Frontiers in Psychiatry | 2013
Patrick O. McGowan
Childhood adversity can have life-long consequences for the response to stressful events later in life. Abuse or severe neglect are well-known risk factors for post-traumatic stress disorder (PTSD), at least in part via changes in neural systems mediating the endocrine response to stress. Determining the biological signatures of risk for stress-related mental disorders such as PTSD is important for identifying homogenous subgroups and improving treatment options. This review will focus on epigenetic regulation in early life by adversity and parental care – prime mediators of offspring neurodevelopment – in order to address several questions: (1) what have studies of humans and analogous animal models taught us about molecular mechanisms underlying changes in stress-sensitive physiological systems in response to early life trauma? (2) What are the considerations for studies relating early adversity and PTSD risk, going forward? I will summarize studies in animals and humans that address the epigenetic response to early adversity in the brain and in peripheral tissues. In so doing, I will describe work on the glucocorticoid receptor and other well-characterized genes within the stress response pathway and then turn to genomic studies to illustrate the use of increasingly powerful high-throughput approaches to the study of epigenomic mechanisms.
Frontiers in Behavioral Neuroscience | 2011
Michael Clinchy; Jay Schulkin; Liana Zanette; Michael J. Sheriff; Patrick O. McGowan; Rudy Boonstra
That the fear and stress of life-threatening experiences can leave an indelible trace on the brain is most clearly exemplified by post-traumatic stress disorder (PTSD). Many researchers studying the animal model of PTSD have adopted utilizing exposure to a predator as a life-threatening psychological stressor, to emulate the experience in humans, and the resulting body of literature has demonstrated numerous long-lasting neurological effects paralleling those in PTSD patients. Even though much more extreme, predator-induced fear and stress in animals in the wild was, until the 1990s, not thought to have any lasting effects, whereas recent experiments have demonstrated that the effects on free-living animals are sufficiently long-lasting to even affect reproduction, though the lasting neurological effects remain unexplored. We suggest neuroscientists and ecologists both have much to gain from collaborating in studying the neurological effects of predator-induced fear and stress in animals in the wild. We outline the approaches taken in the lab that appear most readily translatable to the field, and detail the advantages that studying animals in the wild can offer researchers investigating the “predator model of PTSD.”