Patrick Scholz
University of Bremen
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Patrick Scholz.
Ocean Dynamics | 2013
Patrick Scholz; Gerrit Lohmann; Qiang Wang; Sergey Danilov
The characteristics of a global set-up of the Finite-Element Sea-Ice Ocean Model under forcing of the period 1958–2004 are presented. The model set-up is designed to study the variability in the deep-water mass formation areas and was therefore regionally better resolved in the deep-water formation areas in the Labrador Sea, Greenland Sea, Weddell Sea and Ross Sea. The sea-ice model reproduces realistic sea-ice distributions and variabilities in the sea-ice extent of both hemispheres as well as sea-ice transport that compares well with observational data. Based on a comparison between model and ocean weather ship data in the North Atlantic, we observe that the vertical structure is well captured in areas with a high resolution. In our model set-up, we are able to simulate decadal ocean variability including several salinity anomaly events and corresponding fingerprint in the vertical hydrography. The ocean state of the model set-up features pronounced variability in the Atlantic Meridional Overturning Circulation as well as the associated mixed layer depth pattern in the North Atlantic deep-water formation areas.
Journal of Hydrometeorology | 2015
Monica Ionita; Mihai Dima; Gerrit Lohmann; Patrick Scholz; Norel Rimbu
AbstractOver recent decades Europe has experienced heavy floods, with major consequences for thousands of people and billions of euros worth of damage. In particular, the summer of 2013 flood in central Europe showed how vulnerable modern society is to hydrological extremes and emphasized once more the need for improved forecast methods of such extreme climatic events. Based on a multiple linear regression model, it is shown here that 55% of the June 2013 Elbe River extreme discharge could have been predicted using May precipitation, soil moisture, and sea level pressure. Moreover, the model was able to predict more than 75% of the total Elbe River discharge for June 2013 (in terms of magnitude) by also incorporating the amount of precipitation recorded during the days prior to the flood, but the predicted discharge for the June 2013 event was still underestimated by 25%. Given that all predictors used in the model are available at the end of each month, the forecast scheme can be used to predict extreme ...
Journal of Geophysical Research | 2014
Patrick Scholz; Dagmar Kieke; Gerrit Lohmann; Monica Ionita; Monika Rhein
The deep water formation in the Labrador Sea is simulated with the Finite-Element Sea-Ice Ocean Model (FESOM) in a regionally focused, but globally covered model setup. The model has a regional resolution of up to 7 km, and the simulations cover the time period 1958–2009. We evaluate the capability of the model setup to reproduce a realistic deep water formation in the Labrador Sea. Two classes of modeled Labrador Sea Water (LSW), the lighter upper LSW (uLSW) and the denser deep LSW (dLSW), are analyzed. Their layer thicknesses are compared to uLSW and dLSW layer thicknesses derived from observations in the formation region for the time interval 1988–2009. The results indicate a suitable agreement between the modeled and observational derived uLSW and dLSW layer thicknesses except for the period 2003–2007 where deviations in the modeled and observational derived layer thicknesses could be linked to discrepancies in the atmospheric forcing of the model. It is shown that the model is able to reproduce four phases in the temporal evolution of the potential density, temperature, and salinity, since the late 1980s, which are known in observational data. These four phases are characterized by a significantly different LSW formation. The first phase from 1988 to 1990 is characterized in the model by a fast increase in the convection depth of up to 2000 m, accompanied by an increased spring production of deep Labrador Sea Water (dLSW). In the second phase (1991–1994), the dLSW layer thickness remains on a high level for several years, while the third phase (1995–1998) features a gradual decrease in the deep ventilation and the renewal of the deep ocean layers. The fourth phase from 1999 to 2009 is characterized by a slowly continuing decrease of the dLSW layer thickness on a deeper depth level. By applying a composite map analysis between an index of dLSW and sea level pressure over the entire simulation period from 1958 to 2009, it is shown that a pattern which resembles the structure of the North Atlantic Oscillation (NAO) is one of the main triggers for the variability of LSW formation. Our model results indicate that the process of dLSW formation can act as a low-pass filter to the atmospheric forcing, so that only persistent NAO events have an effect, whether uLSW or dLSW is formed. Based on composite maps of the thermal and haline contributions to the surface density flux we can demonstrate that the central Labrador Sea in the model is dominated by the thermal contributions of the surface density flux, while the haline contributions are stronger over the branch of the Labrador Sea boundary current system (LSBCS), where they are dominated by the haline contributions of sea ice melting and formation. Our model results feature a shielding of the central Labrador Sea from the haline contributions by the LSBCS, which only allows a minor haline interaction with the central Labrador Sea by lateral mixing. Based on the comparison of the simulated and measured LSW layer thicknesses as well as vertical profiles of potential density, temperature, and salinity it is shown that the FESOM model is a suitable tool to study the regional dynamics of LSW formation and its impact on a global, not regional restricted, scale.
Scientific Reports | 2018
Monica Ionita; C. A. Badaluta; Patrick Scholz; Silvia Chelcea
Many of the world’s largest rivers in the extra tropics are covered with ice during the cold season, and in the Northern Hemisphere approximately 60% of the rivers experience significant seasonal effects of river ice. Here we present an observational data set of the ice cover regime for the lower part of the Danube River which spans over the period 1837–2016, and its the longest one on record over this area. The results in this study emphasize the strong impact of climate change on the occurrence of ice regime especially in the second part of the 20th century. The number of ice cover days has decreased considerably (~28days/century) mainly due to an increase in the winter mean temperature. In a long-term context, based on documentary evidences, we show that the ice cover occurrence rate was relatively small throughout the Medieval Warm Period (MWP), while the highest occurrence rates were found during the Maunder Minimum and Dalton Minimum periods. We conclude that the river ice regime can be used as a proxy for the winter temperature over the analyzed region and as an indicator of climate-change related impacts.
Journal of Advances in Modeling Earth Systems | 2018
Dmitry Sidorenko; Nikolay V. Koldunov; Qiang Wang; S. Danilov; H. F. Goessling; O. Gurses; Patrick Scholz; Dmitry Sein; E. Volodin; Claudia Wekerle; Thomas Jung
Sea ice formation is accompanied by the rejection of salt which in nature tends to be mixed vertically by the formation of convective plumes. Here we analyze the influence of a salt plume parameterization (SPP) in an atmosphere-sea ice-ocean model. Two 330 years long simulations have been conducted with the AWI Climate Model. In the reference simulation, the rejected salt in the Arctic Ocean is added to the upper-most ocean layer. This approach is commonly used in climate modelling. In another experiment, employing SPP, the rejected salt is vertically redistributed within the mixed layer based on a power law profile that mimics the penetration of salt plumes. We discuss the effects of this redistribution on the simulated mean state and on atmosphere-ocean linkages associated with the intensity of deep water formation. We find that the salt plume parametrization leads to simultaneous increase of sea ice (volume and concentration) and decrease of sea surface salinity in the Arctic. The SPP considerably alters the interplay between the atmosphere and the ocean in the Nordic Seas. The parameterization modifies the ocean ventilation; however, resulting changes in temperature and salinity largely compensate each other in terms of density so that the overturning circulation is not significantly affected.
Journal of Advances in Modeling Earth Systems | 2018
Dmitry Sein; Nikolay V. Koldunov; Sergey Danilov; Dmitry Sidorenko; Claudia Wekerle; William Cabos; Thomas Rackow; Patrick Scholz; Tido Semmler; Qiang Wang; Thomas Jung
It is often unclear how to optimally choose horizontal resolution for the oceanic and atmospheric components of coupled climate models, which has implications for their ability to make best use of available computational resources. Here we investigate the effect of using different combinations of horizontal resolutions in atmosphere and ocean on the simulated climate in a global coupled climate model (Alfred Wegener Institute Climate Model [AWI‐CM]). Particular attention is given to the Atlantic Meridional Overturning Circulation (AMOC). Four experiments with different combinations of relatively high and low resolutions in the ocean and atmosphere are conducted. We show that increases in atmospheric and oceanic resolution have clear impacts on the simulated AMOC, which are largely independent. Increased atmospheric resolution leads to a weaker AMOC. It also improves the simulated Gulf Stream separation; however, this is only the case if the ocean is locally eddy resolving and reacts to the improved atmosphere. We argue that our results can be explained by reduced mean winds caused by higher cyclone activity. Increased resolution of the ocean affects the AMOC in several ways, thereby locally increasing or reducing the AMOC. The finer topography (and reduced dissipation) in the vicinity of the Caribbean basin tends to locally increase the AMOC. However, there is a reduction in the AMOC around 45°N, which relates to the reduced mixed layer depth in the Labrador Sea in simulations with refined ocean and changes in the North Atlantic current pathway. Furthermore, the eddy‐induced changes in the Southern Ocean increase the strength of the deep cell.
Hydrology and Earth System Sciences | 2016
Monica Ionita; Lena M. Tallaksen; Daniel G. Kingston; James H. Stagge; Gregor Laaha; Henny A. J. Van Lanen; Patrick Scholz; Silvia Chelcea; Klaus Haslinger
Journal of Geophysical Research | 2012
Monica Ionita; Gerrit Lohmann; Norel Rimbu; Patrick Scholz
Hydrological Processes | 2015
Monica Ionita; Patrick Scholz; Silvia Chelcea
Natural Hazards | 2016
Monica Ionita; Patrick Scholz; Silvia Chelcea