Patrick Tik Wan Law
The Chinese University of Hong Kong
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Patrick Tik Wan Law.
PLOS ONE | 2013
Vincent Wai-Sun Wong; Chi-Hang Tse; Tommy Tsan-Yuk Lam; Grace Lai-Hung Wong; Angel Mei-Ling Chim; Winnie C.W. Chu; David K. W. Yeung; Patrick Tik Wan Law; Hoi-Shan Kwan; Jun Yu; Joseph Jao Yiu Sung; Henry Lik-Yuen Chan
Background The human gut microbiota has profound influence on host metabolism and immunity. This study characterized the fecal microbiota in patients with nonalcoholic steatohepatitis (NASH). The relationship between microbiota changes and changes in hepatic steatosis was also studied. Methods Fecal microbiota of histology-proven NASH patients and healthy controls was analyzed by 16S ribosomal RNA pyrosequencing. NASH patients were from a previously reported randomized trial on probiotic treatment. Proton-magnetic resonance spectroscopy was performed to monitor changes in intrahepatic triglyceride content (IHTG). Results A total of 420,344 16S sequences with acceptable quality were obtained from 16 NASH patients and 22 controls. NASH patients had lower fecal abundance of Faecalibacterium and Anaerosporobacter but higher abundance of Parabacteroides and Allisonella. Partial least-square discriminant analysis yielded a model of 10 genera that discriminated NASH patients from controls. At month 6, 6 of 7 patients in the probiotic group and 4 of 9 patients in the usual care group had improvement in IHTG (Pu200a=u200a0.15). Improvement in IHTG was associated with a reduction in the abundance of Firmicutes (R2u200a=u200a0.4820, Pu200a=u200a0.0028) and increase in Bacteroidetes (R2u200a=u200a0.4366, Pu200a=u200a0.0053). This was accompanied by corresponding changes at the class, order and genus levels. In contrast, bacterial biodiversity did not differ between NASH patients and controls, and did not change with probiotic treatment. Conclusions NASH patients have fecal dysbiosis, and changes in microbiota correlate with improvement in hepatic steatosis. Further studies are required to investigate the mechanism underlying the interaction between gut microbes and the liver.
PLOS ONE | 2013
Man Kit Cheung; Wai Yip Lam; Wendy Yin Wan Fung; Patrick Tik Wan Law; Chun Hang Au; Wenyan Nong; Kai Man Kam; Hoi Shan Kwan; Stephen Kwok-Wing Tsui
Background Tuberculosis (TB) remains a global threat in the 21st century. Traditional studies of the disease are focused on the single pathogen Mycobacterium tuberculosis. Recent studies have revealed associations of some diseases with an imbalance in the microbial community. Characterization of the TB microbiota could allow a better understanding of the disease. Methodology/Principal Findings Here, the sputum microbiota in TB infection was examined by using 16S rRNA pyrosequencing. A total of 829,873 high-quality sequencing reads were generated from 22 TB and 14 control sputum samples. Firmicutes, Proteobacteria, Bacteroidetes, Actinobacteria, and Fusobacteria were the five major bacterial phyla recovered, which together composed over 98% of the microbial community. Proteobacteria and Bacteroidetes were more represented in the TB samples and Firmicutes was more predominant in the controls. Sixteen major bacterial genera were recovered. Streptococcus, Neisseria and Prevotella were the most predominant genera, which were dominated by several operational taxonomic units grouped at a 97% similarity level. Actinomyces, Fusobacterium, Leptotrichia, Prevotella, Streptococcus, and Veillonella were found in all TB samples, possibly representing the core genera in TB sputum microbiota. The less represented genera Mogibacterium, Moryella and Oribacterium were enriched statistically in the TB samples, while a genus belonging to the unclassified Lactobacillales was enriched in the controls. The diversity of microbiota was similar in the TB and control samples. Conclusions/Significance The composition and diversity of sputum microbiota in TB infection was characterized for the first time by using high-throughput pyrosequencing. It lays the framework for examination of potential roles played by the diverse microbiota in TB pathogenesis and progression, and could ultimately facilitate advances in TB treatment.
Journal of Cellular Biochemistry | 2006
Wai-Yip Lam; Kam Tong Leung; Patrick Tik Wan Law; Simon Ming-Yuen Lee; Henry Lik-Yuen Chan; Kwok-Pui Fung; Vincent E.C. Ooi; Mary Miu Yee Waye
Ethanolic extract of Phyllanthus nanus (P. nanus) treatment exhibited potent antiviral activity against Hepatitis B virus (HBV). The effects of these extracts on HBV in the HBV genome integrated cell lines—Alexander cells and HepG2 2.2.15 cells were examined. Experimental results showed that the ethanolic extract of P. nanus produced suppressive effect on HBsAg secretion and HBsAg mRNA expression. The extract also inhibited HBV replication as measured by HBV DNA level in vitro. In addition, using a duck HBV (DHBV) primary culture model, the P. nanus ethanolic extract suppressed viral replication of DHBV in DHBV infected primary duck hepatocytes. The gene expression pattern in Alexander cells that had been treated with the ethanolic extract of P. nanus was also revealed by microarray techniques. The microarray results indicated that there was up‐regulation of expression of several genes, including annexin A7 (Axn7). The subcellular localization of Axn7 and anti‐HBV effect of Axn7 over‐expression in Alexander cells were also investigated. Results showed that expression of Axn7–GFP fusion protein are localized around the secretory vesicles and could cause a decrease in HBsAg secretion in Alexander cells. Axn7 protein might play an important role in the medicinal effect of the active principle(s) of P. nanus. J. Cell. Biochem. 97: 795–812, 2006.
Molecular Biology and Evolution | 2015
Xuanjin Cheng; Jerome H. L. Hui; Yung Yung Lee; Patrick Tik Wan Law; Hoi Shan Kwan
The developmental hourglass concept suggests that intermediate developmental stages are most resistant to evolutionary changes and that differences between species arise through divergence later in development. This high conservation during middevelopment is illustrated by the waist of the hourglass and it represents a low probability of evolutionary change. Earlier molecular surveys both on animals and on plants have shown that the genes expressed at the waist stage are more ancient and more conserved in their expression. The existence of such a developmental hourglass has not been explored in fungi, another eukaryotic kingdom. In this study, we generated a series of transcriptomic data covering the entire lifecycle of a model mushroom-forming fungus, Coprinopsis cinerea, and we observed a molecular hourglass over its development. The young fruiting body is the stage that expresses the evolutionarily oldest (lowest transcriptome age index) transcriptome and gives the strongest signal of purifying selection (lowest transcriptome divergence index). We also demonstrated that all three kingdoms-animals, plants, and fungi-display high expression levels of genes in information storage and processing at the waist stages, whereas the genes in metabolism become more highly expressed later. Besides, the three kingdoms all show underrepresented signal transduction mechanisms at the waist stages. The synchronic existence of a molecular hourglass across the three kingdoms reveals a mutual strategy for eukaryotes to incorporate evolutionary innovations.
Biochimica et Biophysica Acta | 1996
Wai Yip Lam; Stephen Kwok-Wing Tsui; Patrick Tik Wan Law; Sharon Chui Wah Luk; Kwok-Pui Fung; Cheuk Yu Lee; Mary Miu Yee Waye
A novel cDNA clone was isolated from a human adult heart cDNA library. This cDNA clone is similar to the small heat shock protein (smhsp) in both DNA and amino acid sequences, especially in the conserved region. Sequence analysis has shown that the putative novel smhsp, named 27 kDa heat-shock-protein-like protein (HSPL27) is a protein of 241 amino acids with a deduced molecular mass of 26.7 kDa and a deduced pI of 8.0. We have expressed the HSPL27 in E. coli and the expressed protein was found to be present in the soluble fraction of the bacterial cell lysate. Chromosomal mapping data shows that the HSPL27 gene is located at human chromosome 5q11.2.
Biochimica et Biophysica Acta | 1996
Patrick Tik Wan Law; Stephen Kwok-Wing Tsui; Wai-Yip Lam; Sharon Chui Wah Luk; David M. Hwang; C.C. Liew; C.Y. Lee; Kwok-Pui Fung; Mary Mui-Yee Waye
During the large scale partial sequencing of human heart cDNA clones, a novel clone which is very similar to the rat ribosomal protein L29 in both DNA and amino acid sequences was found. The cDNA encodes a protein with a deduced molecular weight of 17751 (159 aa). It shows 80.4% homology to protein L29 from the large ribosomal subunit of rat and is related to yeast YL43. The putative protein was named human ribosomal protein L29 (hRPL29). hRPL29 has a large excess of basic residues over acidic ones. The large amount of charged residues makes the protein very hydrophilic and the protein has a deduced pI of 12.16. Internal repeats have been characterised in many ribosomal proteins and a tandem repeat of KAKAKAKA was found to be unique to hRPL29. Analysis of gene organisation by Southern blotting shows that of the approximate 10 copies of hrpL29, all but one are pseudogenes. Northern analysis indicated that the mRNA that encodes human L29 is approx. 800 base pairs in length. An intron of hrpL29 has also been cloned and sequenced by polymerase chain reaction using human genomic DNA as the template.
Marine Biotechnology | 2015
Man Kit Cheung; Ho Yin Yip; Wenyan Nong; Patrick Tik Wan Law; Ka Hou Chu; Hoi Shan Kwan; Jerome H. L. Hui
During evolution of animals, their co-evolution with bacteria has generally been ignored. Recent studies have provided evidences that the symbiotic bacteria in the animal gut can either be essential or contributing to the plasticity of the host. The Crustacea includes crab, crayfish, lobster, and shrimp and represents the second largest subphylum on the planet. Although there are already studies investigating the intestinal bacterial communities in crustaceans, none of them has examined the microbiota in different parts of the digestive system during the gonad development of the host. Here, we utilized a new shrimp model Neocaridina denticulata and sequenced the 16S rRNA using the Ion Torrent platform to survey the bacterial populations colonizing the hepatopancreas, foregut, and intestine, including midgut and hindgut, of the early, mid, and late ovarian maturation stages of the shrimp. The predominant bacteria phylum was found to be Proteobacteria, with more than 80xa0% reads from the gut flora at the early gonad development belonged to a Coxiella-type bacterium. Distinct bacterial communities can be detected between the hepatopancreas and gut, although no significant difference could be revealed between the different regions of the gut investigated. Surprisingly, during the gonad development, bacterial diversity changed rapidly in the gut but not the hepatopancreas. This study provides the first evidence that microbiota modified differentially in specific regions of the digestive tract during gonadal development of crustaceans.
Gene | 2014
Chun Hang Au; Man Chun Wong; Dapeng Bao; Meiyan Zhang; Chunyan Song; Wenhua Song; Patrick Tik Wan Law; Ursula Kües; Hoi Shan Kwan
The Shiitake mushroom, Lentinula edodes (Berk.) Pegler is a tetrapolar basidiomycete with two unlinked mating-type loci, commonly called the A and B loci. Identifying the mating-types in shiitake is important for enhancing the breeding and cultivation of this economically-important edible mushroom. Here, we identified the A mating-type locus from the first draft genome sequence of L. edodes and characterized multiple alleles from different monokaryotic strains. Two intron-length polymorphism markers were developed to facilitate rapid molecular determination of A mating-type. L. edodes sequences were compared with those of known tetrapolar and bipolar basidiomycete species. The A mating-type genes are conserved at the homeodomain region across the order Agaricales. However, we observed unique genomic organization of the locus in L. edodes which exhibits atypical gene order and multiple repetitive elements around its A locus. To our knowledge, this is the first known exception among Homobasidiomycetes, in which the mitochondrial intermediate peptidase (mip) gene is not closely linked to A locus.
BMC Research Notes | 2013
Chun Hang Au; Man Kit Cheung; Man Chun Wong; Astley Kin Kan Chu; Patrick Tik Wan Law; Hoi Shan Kwan
BackgroundGenetic linkage maps are important tools in breeding programmes and quantitative trait analyses. Traditional molecular markers used for genotyping are limited in throughput and efficiency. The advent of next-generation sequencing technologies has facilitated progeny genotyping and genetic linkage map construction in the major grains. However, the applicability of the approach remains untested in the fungal system.FindingsShiitake mushroom, Lentinula edodes, is a basidiomycetous fungus that represents one of the most popular cultivated edible mushrooms. Here, we developed a rapid genotyping method based on low-coverage (~0.5 to 1.5-fold) whole-genome resequencing. We used the approach to genotype 20 single-spore isolates derived from L. edodes strain L54 and constructed the first high-density sequence-based genetic linkage map of L. edodes. The accuracy of the proposed genotyping method was verified experimentally with results from mating compatibility tests and PCR-single-strand conformation polymorphism on a few known genes. The linkage map spanned a total genetic distance of 637.1 cM and contained 13 linkage groups. Two hundred sequence-based markers were placed on the map, with an average marker spacing of 3.4 cM. The accuracy of the map was confirmed by comparing with previous maps the locations of known genes such as matA and matB.ConclusionsWe used the shiitake mushroom as an example to provide a proof-of-principle that low-coverage resequencing could allow rapid genotyping of basidiospore-derived progenies, which could in turn facilitate the construction of high-density genetic linkage maps of basidiomycetous fungi for quantitative trait analyses and improvement of genome assembly.
International Journal of Molecular Sciences | 2016
Carmen W.H. Chan; Rosa S. Wong; Patrick Tik Wan Law; Cho Lee Wong; Stephen Kwok-Wing Tsui; Winnie P.Y. Tang; Janet W. H. Sit
Eczema is a common skin condition that impairs children’s daily life activities and quality of life. Previous research shows that gut microbiome composition plays an important role in the development of eczema. The present review summarizes evidence on environmental factors related to altered gut microbiota in children with eczema. We searched Medline, PubMed, Embase, and the Cochrane database of Systematic Reviews through October 2015. The search strategy focused on articles published in peer-reviewed, English-language journals with no publication year limit. Only original studies and review articles that reported environmental factors on gut microbiome specific to eczema were included in this review. We selected six studies (total 1990 participants) for full review and identified that the composition of gut microbiota specific to eczema could be influenced by the following environmental factors: length of gestation, mode of delivery, type of feeding, method of treatment, number of older siblings, and other lifestyle factors. There has been inconsistent empirical evidence as to the modulatory effects of gut microbiota on immunological functions in children with eczema. Further research on the environmental-host-microbial interaction is needed to develop a strong base of knowledge for the development and implementation of prevention strategies and policies for eczema.