Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Patrick W. Inglett is active.

Publication


Featured researches published by Patrick W. Inglett.


Applied Geochemistry | 2000

The ferrozine method revisited: Fe(II)/Fe(III) determination in natural waters

E. Viollier; Patrick W. Inglett; Kimberley S. Hunter; Alakendra Roychoudhury; P. Van Cappellen

Abstract The original ferrozine method has been modified to sequentially determine the Fe(II)/Fe(III) speciation in small volumes of fresh and marine water samples, at the submicromolar level. Spectrophotometric analyses of the Fe(II)–ferrozine complex are performed on a single aliquot before and after a reduction step with hydroxylamine. The procedure is calibrated using Fe(III) standards stable under normal conditions of analysis. It is shown also that the presence of high concentrations of dissolved NOM (natural organic matter) do not create any significant artifacts. The method was used to measure Fe(II) and Fe(III) depth distribution in salt marsh pore waters and in a stratified marine basin.


Biogeochemistry | 2012

Temperature sensitivity of greenhouse gas production in wetland soils of different vegetation

Kanika S. Inglett; Patrick W. Inglett; K. R. Reddy; Todd Z. Osborne

Organic matter decomposition regulates rates of carbon loss (CO2 and CH4) in wetlands and has implications for carbon sequestration in the context of changing global temperature. Here we determined the influence of temperature and vegetation type on both aerobic and anaerobic decomposition of organic matter in subtropical wetland soils. As in many other studies, increased temperature resulted in higher rates of respiration and methanogenesis under both aerobic and anaerobic conditions, and the positive effect of temperature depended on vegetation (source of carbon substrate to soil). Under anaerobic incubations, the proportion of gaseous C (CO2 and CH4) lost as CH4 increased with temperature indicating a greater sensitivity of methanogenesis to temperature. This was further supported by a wider range of Q10 values (1.4–3.6) for methane production as compared with anaerobic CO2 (1.3–2.5) or aerobic CO2 (1.4–2.1) production. The increasing strength of positive linear correlation between CO2:CH4 ratio and the soil organic matter ligno-cellulose index at higher temperature indicated that the temperature sensitivity of methanogenesis was likely the result of increased C availability at higher temperature. This information adds to our basic understanding of decomposition in warmer subtropical and tropical wetland systems and has implications for C models in wetlands with different vegetation types.


Environmental Science & Technology | 2010

Phosphorus Transformations during Decomposition of Wetland Macrophytes

Alexander W. Cheesman; Benjamin L. Turner; Patrick W. Inglett; K. Ramesh Reddy

The microbially mediated transformation of detrital P entering wetlands has important implications for the cycling and long-term sequestration of P in wetland soils. We investigated changes in P forms in sawgrass (Cladium jamaicense Crantz) and cattail (Typha domingensis Pers.) leaf litter during 15 months of decomposition at two sites of markedly different nutrient status within a hard-water subtropical wetland (Water Conservation Area 2A, Florida). Leaf litter decomposition at the nutrient enriched site resulted in net sequestration of P from the environment in forms characteristic of microbial cells (i.e., phosphodiesters and pyrophosphate). In contrast, low P concentrations at the unenriched site resulted in little or no net sequestration of P, with changes in P forms limited to the loss of compounds present in the initial leaf litter. We conclude that under nutrient-rich conditions, P sequestration occurs through the accumulation of microbially derived compounds and the presumed concentration of endogenous macrophyte P. Under nutrient-poor conditions, standing P pools within wetland soils appear to be independent of the heterotrophic decomposition of macrophyte leaf litter. These conclusions have important implications for our ability to predict the nature, stability, and rates of P sequestration in wetlands in response to changes in nutrient loading.


Journal of Paleolimnology | 2012

Stable isotope (δ13C and δ15N) values of sediment organic matter in subtropical lakes of different trophic status

Isabela C. Torres; Patrick W. Inglett; Mark Brenner; William F. Kenney; K. Ramesh Reddy

Lake sediments contain archives of past environmental conditions in and around water bodies and stable isotope analyses (δ13C and δ15N) of sediment cores have been used to infer past environmental changes in aquatic ecosystems. In this study, we analyzed organic matter (OM), carbon (C), nitrogen (N), phosphorus (P), and δ13C and δ15N values in sediment cores from three subtropical lakes that span a broad range of trophic state. Our principal objectives were to: (1) evaluate whether nutrient concentrations and stable isotope values in surface deposits reflect modern trophic state conditions in the lakes, and (2) assess whether stratigraphic changes in the measured variables yield information about shifts in trophic status through time, or alternatively, diagenetic changes in sediment OM. Three Florida (USA) lakes of very different trophic status were selected for this study. Results showed that both δ13C and δ15N values in surface sediments of the oligo-mesotrophic lake were relatively low compared to values in surface sediments of the other lakes, and were progressively lower with depth in the sediment core. Sediments of the eutrophic lake had δ13C values that declined upcore, whereas δ15N values increased toward the sediment surface. The eutrophic lake displayed δ13C values intermediate between those in the oligo-mesotrophic and hypereutrophic lakes. Sediments of the hypereutrophic lake had relatively higher δ13C and δ15N values. In general, we found greater δ13C and δ15N values with increasing lake trophic state.


Critical Reviews in Environmental Science and Technology | 2011

Biogeochemistry of Nitrogen Across the Everglades Landscape

Patrick W. Inglett; Victor H. Rivera-Monroy; J. R. Wozniak

Compared to phosphorus (P), nitrogen (N) has received little attention across the Everglades landscape. Despite this lack of attention, N plays important roles in many Everglades systems, including being a significant pollutant in Florida Bay and the Gulf of Mexico, the limiting nutrient in highly P-impacted areas, and an important substrate for microbial metabolism. Storage and transport of N throughout the Everglades is dominated by organic forms, including peat soils and dissolved organic N in the water column. In general, N sources are highest in the northern areas; however, atmospheric deposition and active N2 fixation by the periphyton components are a significant N source throughout most systems. Many of the processes involved in the wetland N cycle remain unmeasured for most of the Everglades systems. In particular, the lack of in situ rates for N2 fixation and denitrification prevent the construction of system-level budgets, especially for the Southern mangrove systems where N export into Florida Bay is critical. There is also the potential for several novel N processes (e.g., Anammox) with an as yet undetermined importance for nitrogen cycling and function of the Everglades ecosystem. Phosphorus loading alters the N cycle by stimulating organic N mineralization with resulting flux of ammonium and DON, and at elevated P concentrations, by increasing rates of N2 fixation and N assimilation. Restoration of hydrology has a potential for significantly impacting N cycling in the Everglades both in terms of affecting N transport, but also by altering aerobic-anaerobic transitions at the soil-water interface or in areas with seasonal drawdowns (e.g., marl prairies). Based on the authors’ understanding of N processes, much more research is necessary to adequately predict potential impacts from hydrologic restoration, as well as the function of Everglades systems as sinks, sources, and transformers of N in the South Florida landscape.


Science of The Total Environment | 2012

Nutrient release from combustion residues of two contrasting herbaceous vegetation types

Benjamin Hogue; Patrick W. Inglett

Fire is a critical regulator of biogeochemical cycles in approximately 40% of the earths land surface. However, little is known about nutrient release from combustion residues (ash and char) from herbaceous or grassland fires of varying intensity. Much of our knowledge in this area is derived from muffle furnace temperature gradient experiments. Therefore, we used two approaches (muffle and flame burning) to combust herbaceous biomass from contrasting nutrient level sites to estimate the forms and availability of nutrients after fire. Clear differences were measured in total and extractable nutrient concentrations in combustion residues of different plant types, with most carbon (C) and nitrogen (N) being volatilized (>99%), while P remained in high concentrations in the residues. Different combustion methods yielded contrasting results, where temperatures greatly affected nutrient quantity and form in muffle furnace residues, while relatively similar residues resulted from flame combustion at varying intensities. It was also found that only 5% of N and 50% of P remaining in flame combustion residues were extractable. Flame residues appeared to be composed of mixtures of materials (ash and char) created at low (<350 °C) muffle temperatures (extractable P forms), and high (>450 °C) muffle temperatures (pH, extractable potassium (K), and extractable NH(4)-N). We attribute dissimilar results of the combustion methods to heterogeneity of combustion (zones of low oxygen availability) and short duration (<300 s) of combustion characterizing natural fires in herbaceous, grassland systems. These results can be adapted to ecosystem level models to better predict nutrient changes that may occur after a fire event.


Critical Reviews in Environmental Science and Technology | 2011

Restoration of Disturbed Lands: The Hole-in-the-Donut Restoration in the Everglades

Craig S. Smith; Lauren Serra; Yuncong Li; Patrick W. Inglett; Kanika S. Inglett

The Hole-in-the-Donut (HID) wetland restoration project was established on former agricultural land inside Everglades National Park, where rock plowing and fertilization had altered the hydrology, structure, depth, aeration, and nutrient content of soils. Following the cessation of farming, highly disturbed HID soils were invaded by dense, nearly monospecific stands of Brazilian pepper (Schinus terebinthifolius Raddi). Initial efforts to restore Brazilian pepper-dominated areas failed, and only complete removal of the substrate down to the surface of bedrock was successful. Complete soil removal resulted in the restoration of a plant community dominated by native wetland plants. Following restoration, initially very shallow soils gradually deepened as marl accreted as due to the activities of periphyton. By 15 years postrestoration, an average of 3.7 cm of soil had developed. Initially low nitrogen concentrations increased following restoration, whereas phosphorus was converted to organic forms and diluted by the accumulation of marl. The result of these changes was a gradual switch from nitrogen limitation to phosphorus limitation, eventually mirroring the situation in adjacent undisturbed wetland sites. Complete substrate removal, as used in the HID, could be used to restore other areas of the Everglades degraded by nutrient enrichment.


Science of The Total Environment | 2015

Wading bird guano enrichment of soil nutrients in tree islands of the Florida Everglades

Daniel L. Irick; Binhe Gu; Yuncong Li; Patrick W. Inglett; Peter C. Frederick; Michael S. Ross; Alan L. Wright; Sharon M.L. Ewe

Differential distribution of nutrients within an ecosystem can offer insight of ecological and physical processes that are otherwise unclear. This study was conducted to determine if enrichment of phosphorus (P) in tree island soils of the Florida Everglades can be explained by bird guano deposition. Concentrations of total carbon, nitrogen (N), and P, and N stable isotope ratio (δ(15)N) were determined on soil samples from 46 tree islands. Total elemental concentrations and δ(15)N were determined on wading bird guano. Sequential chemical extraction of P pools was also performed on guano. Guano contained between 53.1 and 123.7 g-N kg(-1) and 20.7 and 56.7 g-P kg(-1). Most of the P present in guano was extractable by HCl, which ranged from 82 to 97% of the total P. Total P of tree islands classified as having low or high P soils averaged 0.71 and 40.6 g kg(-1), respectively. Tree island soil with high total P concentration was found to have a similar δ(15)N signature and total P concentration as bird guano. Phosphorus concentrations and δ(15)N were positively correlated in tree island soils (r = 0.83, p< 0.0001). Potential input of guano with elevated concentrations of N and P, and (15)N enriched N, relative to other sources suggests that guano deposition in tree island soils is a mechanism contributing to this pattern.


Science of The Total Environment | 2016

Seasonal patterns of nitrogen cycling in subtropical short-hydroperiod wetlands: Effects of precipitation and restoration

Xiaolin Liao; Patrick W. Inglett; Kanika S. Inglett

In the event of increased frequency of extreme wet or dry events resulting from climate change, it becomes more important to understand the temporal dynamics of soil nitrogen (N) processes in ecosystems. Here, seasonal patterns of N cycling were characterized in subtropical wetlands in Everglades National Park, Florida, USA. Two restored sites and one reference site with different nutrient status, soil depth, and vegetation communities, were selected. Soil available N, microbial biomass, potential N mineralization and denitrification rates, enzyme activities of leucine aminopeptidase (LAP) and N-acetyl-β-d-glucosaminidase (NAG) were measured across the wet and dry seasons from 2010 to 2011. In general, most N processes were significantly correlated with soil water contents (P<0.05) which reflected the precipitation regime. The lower elevation and shallower soil (2-3cm depth) at the restored site may contribute to their higher soil water contents compared to the reference site with ~10cm soil depth, which further led to the earlier peaks of microbial biomass at the two restored sites. Potential N mineralization was positively correlated with LAP at the restored sites whereas with NAG at the reference site (P<0.05), implying that different vegetation composition may provide varying substrates for soil microbes. The build-up of nitrate in the dry spring of 2011 induced a pulse of denitrification after rewetting by a sudden rainfall, implying the presence of a hot moment of denitrification during the dry-rewetting transition period. The decrease of MBC:MBN ratio from dry to wet season indicates a possible microbial composition shift from fungi to bacteria, shedding lights on the potential contribution of fugal groups to denitrification in the dry season. Our study highlight that even under the same climate regime, the small-scale variations could affect the seasonal patterns of N cycling.


Hydrobiologia | 2014

Dynamics of periphyton nitrogen fixation in short- hydroperiod wetlands revealed by high-resolution seasonal sampling

Xiaolin Liao; Patrick W. Inglett

Periphyton N2 fixation plays a key role in N cycling of aquatic systems, but temporal studies of this process are often lacking, especially in systems with only seasonal flooding. We used seven samplings to characterize nitrogenase activity (acetylene reduction method) of periphyton in short-hydroperiod marl prairies and two wetlands restored from agricultural disturbance in Everglades National Park, USA. We hypothesized that the seasonal drying and rewetting would increase the temporal dynamics of the process. All sites showed significant periphyton N2 fixation, but in restored areas highest rates were observed only in the early wet season (July), while in reference sites fixation was spread throughout the summer. Most N2 fixation in the restored areas was confined to a 3-month-period resulting in large underestimates of annual fixation in previous studies with few seasonal measurements. N2 fixation rates correlated with total P, N and TN:TP ratio, and periphyton moisture content in the dry season. N stable isotopic signature was a good indicator of N2 fixation rates between sites, but did not correctly indicate seasonal patterns. These findings improve our understanding of N cycling in wetlands like the Everglades and indicate a need for more detailed measurements of processes in seasonally flooded systems.

Collaboration


Dive into the Patrick W. Inglett's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge