Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Patrik Engström is active.

Publication


Featured researches published by Patrik Engström.


Journal of Bacteriology | 2013

Mutations in hemG Mediate Resistance to Salicylidene Acylhydrazides, Demonstrating a Novel Link between Protoporphyrinogen Oxidase (HemG) and Chlamydia trachomatis Infectivity

Patrik Engström; Bidong D. Nguyen; Johan Normark; Ingela Nilsson; Robert J. Bastidas; Åsa Gylfe; Mikael Elofsson; Kenneth A. Fields; Raphael H. Valdivia; Hans Wolf-Watz; Sven Bergström

Salicylidene acylhydrazides (SAHs) inhibit the type III secretion system (T3S) of Yersinia and other Gram-negative bacteria. In addition, SAHs restrict the growth and development of Chlamydia species. However, since the inhibition of Chlamydia growth by SAH is suppressed by the addition of excess iron and since SAHs have an iron-chelating capacity, their role as specific T3S inhibitors is unclear. We investigated here whether SAHs exhibit a function on C. trachomatis that goes beyond iron chelation. We found that the iron-saturated SAH INP0341 (IS-INP0341) specifically affects C. trachomatis infectivity with reduced generation of infectious elementary body (EB) progeny. Selection and isolation of spontaneous SAH-resistant mutant strains revealed that mutations in hemG suppressed the reduced infectivity caused by IS-INP0341 treatment. Structural modeling of C. trachomatis HemG predicts that the acquired mutations are located in the active site of the enzyme, suggesting that IS-INP0341 inhibits this domain of HemG and that protoporphyrinogen oxidase (HemG) and heme metabolism are important for C. trachomatis infectivity.


Journal of Medicinal Chemistry | 2016

Thiazolino 2-Pyridone Amide Inhibitors of Chlamydia trachomatis Infectivity

James A. D. Good; Jim Silver; Carlos Núñez-Otero; Wael Bahnan; K. Syam Krishnan; Olli Salin; Patrik Engström; Richard Svensson; Per Artursson; Åsa Gylfe; Sven Bergström; Fredrik Almqvist

The bacterial pathogen Chlamydia trachomatis is a global health burden currently treated with broad-spectrum antibiotics which disrupt commensal bacteria. We recently identified a compound through phenotypic screening that blocked infectivity of this intracellular pathogen without host cell toxicity (compound 1, KSK 120). Herein, we present the optimization of 1 to a class of thiazolino 2-pyridone amides that are highly efficacious (EC50 ≤ 100 nM) in attenuating infectivity across multiple serovars of C. trachomatis without host cell toxicity. The lead compound 21a exhibits reduced lipophilicity versus 1 and did not affect the growth or viability of representative commensal flora at 50 μM. In microscopy studies, a highly active fluorescent analogue 37 localized inside the parasitiphorous inclusion, indicative of a specific targeting of bacterial components. In summary, we present a class of small molecules to enable the development of specific treatments for C. trachomatis.


Mbio | 2014

A 2-Pyridone-Amide Inhibitor Targets the Glucose Metabolism Pathway of Chlamydia trachomatis

Patrik Engström; K. Syam Krishnan; Bidong D. Ngyuen; Erik Chorell; Johan Normark; Jim Silver; Robert J. Bastidas; Matthew D. Welch; Scott J. Hultgren; Hans Wolf-Watz; Raphael H. Valdivia; Fredrik Almqvist; Sven Bergström

ABSTRACT In a screen for compounds that inhibit infectivity of the obligate intracellular pathogen Chlamydia trachomatis, we identified the 2-pyridone amide KSK120. A fluorescent KSK120 analogue was synthesized and observed to be associated with the C. trachomatis surface, suggesting that its target is bacterial. We isolated KSK120-resistant strains and determined that several resistance mutations are in genes that affect the uptake and use of glucose-6-phosphate (G-6P). Consistent with an effect on G-6P metabolism, treatment with KSK120 blocked glycogen accumulation. Interestingly, KSK120 did not affect Escherichia coli or the host cell. Thus, 2-pyridone amides may represent a class of drugs that can specifically inhibit C. trachomatis infection. IMPORTANCE Chlamydia trachomatis is a bacterial pathogen of humans that causes a common sexually transmitted disease as well as eye infections. It grows only inside cells of its host organism, within a parasitophorous vacuole termed the inclusion. Little is known, however, about what bacterial components and processes are important for C. trachomatis cellular infectivity. Here, by using a visual screen for compounds that affect bacterial distribution within the chlamydial inclusion, we identified the inhibitor KSK120. As hypothesized, the altered bacterial distribution induced by KSK120 correlated with a block in C. trachomatis infectivity. Our data suggest that the compound targets the glucose-6-phosphate (G-6P) metabolism pathway of C. trachomatis, supporting previous indications that G-6P metabolism is critical for C. trachomatis infectivity. Thus, KSK120 may be a useful tool to study chlamydial glucose metabolism and has the potential to be used in the treatment of C. trachomatis infections. Chlamydia trachomatis is a bacterial pathogen of humans that causes a common sexually transmitted disease as well as eye infections. It grows only inside cells of its host organism, within a parasitophorous vacuole termed the inclusion. Little is known, however, about what bacterial components and processes are important for C. trachomatis cellular infectivity. Here, by using a visual screen for compounds that affect bacterial distribution within the chlamydial inclusion, we identified the inhibitor KSK120. As hypothesized, the altered bacterial distribution induced by KSK120 correlated with a block in C. trachomatis infectivity. Our data suggest that the compound targets the glucose-6-phosphate (G-6P) metabolism pathway of C. trachomatis, supporting previous indications that G-6P metabolism is critical for C. trachomatis infectivity. Thus, KSK120 may be a useful tool to study chlamydial glucose metabolism and has the potential to be used in the treatment of C. trachomatis infections.


Fems Immunology and Medical Microbiology | 2010

A comparative study of RNA and DNA as internal gene expression controls early in the developmental cycle of Chlamydia pneumoniae

Patrik Engström; Leslie Bailey; Thomas Önskog; Sven Bergström

Many microbial pathogens invade and proliferate within host cells and the molecular mechanism underlying this behavior is currently being revealed for several bacterial species. Testing clinically relevant antibacterial compounds and elucidating their effects on gene expression requires adequate controls, especially when studying genetically intractable organisms such as Chlamydia spp., for which various gene fusions cannot be constructed. Until now, relative mRNA levels in Chlamydia have been measured using different internal gene expression controls, including 16S rRNA, mRNAs, and DNA. Here, we compared the advantages and disadvantages of various internal expression controls during the early phase of Chlamydia pneumoniae development. The relative abundance of target mRNAs varied using the different internal control RNAs. This was partly due to variation in the transcript stability of the RNA species. Also, seven out of nine of the analyzed RNAs increased fivefold or more between 2 and 14 h postinfection, while the amount of DNA and number of cells remained essentially unaltered. Our results suggest that RNA should not be used as a gene expression control during the early phase of Chlamydia development, and that intrinsic bacterial DNA is preferable for that purpose because it is stable, abundant, and its relative amount is generally correlated with bacterial numbers.


Microbes and Infection | 2008

Chlamydia pneumoniae infection results in generalized bone loss in mice

Leslie Bailey; Patrik Engström; Anna Nordström; Sven Bergström; Anders Waldenström; Peter Nordström

Osteoporosis is associated with a general bone loss. Whether infections could contribute to osteoporosis is not known. Chlamydia pneumoniae causes chronic infections and produces potentially bone resorptive cytokines. The effect of C. pneumoniae infection was investigated in vivo in 10-week old mice (c57BL/6) and in vitro in the human osteoblast-like cell line hFOB 1.19 (hFOB). Bone mineral density (BMD) was measured before and 16 days after infection. C. pneumoniae-infected mice had decreased (p<0.05) total and subcortical BMD at the distal femur and proximal tibia compared with controls, but no body-weight gain differences. IL-6 (56 vs. 39pg/mL, p=0.02) and IL-1beta (11 vs. 0pg/mL, p=0.003) levels in sera, and CD3(+) T-cells (p=0.04) were higher in infected mice compared with controls. In vitro, hFOB infected with C. pneumoniae was associated with increased IL-6 (p=0.01) and RANKL (p<0.05) mRNA expression; additionally, IL-6 secretion increased in a dose-dependent manner (p<0.05). In summary, mice infected with C. pneumoniae had generalized bone loss associated with increased IL-6 and IL-1. In addition, C. pneumoniae established an infection in an osteoblast cell line in vitro with similar cytokine profiles as those in vivo, supporting a causal linkage.


International Journal of Medical Microbiology | 2015

Expansion of the Chlamydia trachomatis inclusion does not require bacterial replication

Patrik Engström; Malin Bergström; Astrid C. Alfaro; K. Syam Krishnan; Wael Bahnan; Fredrik Almqvist; Sven Bergström

Chlamydia trachomatis replication takes place inside of a host cell, exclusively within a vacuole known as the inclusion. During an infection, the inclusion expands to accommodate the increasing numbers of C. trachomatis. However, whether inclusion expansion requires bacterial replication and/or de novo protein synthesis has not been previously investigated in detail. Therefore, using a chemical biology approach, we herein investigated C. trachomatis inclusion expansion under varying conditions in vitro. Under normal cell culture conditions, inclusion expansion correlated with C. trachomatis replication. When bacterial replication was inhibited using KSK120, an inhibitor that targets C. trachomatis glucose metabolism, inclusions expanded even in the absence of bacterial replication. In contrast, when bacterial protein synthesis was inhibited using chloramphenicol, expansion of inclusions was blocked. Together, these data suggest that de novo protein synthesis is necessary, whereas bacterial replication is dispensable for C. trachomatis inclusion expansion.


Antimicrobial Agents and Chemotherapy | 2017

N-acylated derivatives of sulfamethoxazole block Chlamydia fatty acid synthesis and interact with FabF

Sergio Mojica; Olli Salin; Robert J. Bastidas; Naresh Sunduru; Mattias Hedenström; C. David Andersson; Carlos Núñez-Otero; Patrik Engström; Raphael H. Valdivia; Mikael Elofsson; Åsa Gylfe

ABSTRACT The type II fatty acid synthesis (FASII) pathway is essential for bacterial lipid biosynthesis and continues to be a promising target for novel antibacterial compounds. Recently, it has been demonstrated that Chlamydia is capable of FASII and this pathway is indispensable for Chlamydia growth. Previously, a high-content screen with Chlamydia trachomatis-infected cells was performed, and acylated sulfonamides were identified to be potent growth inhibitors of the bacteria. C. trachomatis strains resistant to acylated sulfonamides were isolated by serial passage of a wild-type strain in the presence of low compound concentrations. Results from whole-genome sequencing of 10 isolates from two independent drug-resistant populations revealed that mutations that accumulated in fabF were predominant. Studies of the interaction between the FabF protein and small molecules showed that acylated sulfonamides directly bind to recombinant FabF in vitro and treatment of C. trachomatis-infected HeLa cells with the compounds leads to a decrease in the synthesis of Chlamydia fatty acids. This work demonstrates the importance of FASII for Chlamydia development and may lead to the development of new antimicrobials.


PLOS ONE | 2014

Maladjusted Host Immune Responses Induce Experimental Cerebral Malaria-Like Pathology in a Murine Borrelia and Plasmodium Co-Infection Model

Johan Normark; Maria Nelson; Patrik Engström; Marie Andersson; Rafael Björk; Thomas Moritz; Anna Fahlgren; Sven Bergström

In the Plasmodium infected host, a balance between pro- and anti-inflammatory responses is required to clear the parasites without inducing major host pathology. Clinical reports suggest that bacterial infection in conjunction with malaria aggravates disease and raises both mortality and morbidity in these patients. In this study, we investigated the immune responses in BALB/c mice, co-infected with Plasmodium berghei NK65 parasites and the relapsing fever bacterium Borrelia duttonii. In contrast to single infections, we identified in the co-infected mice a reduction of L-Arginine levels in the serum. It indicated diminished bioavailability of NO, which argued for a dysfunctional endothelium. Consistent with this, we observed increased sequestration of CD8+ cells in the brain as well over expression of ICAM-1 and VCAM by brain endothelial cells. Co-infected mice further showed an increased inflammatory response through IL-1β and TNF-α, as well as inability to down regulate the same through IL-10. In addition we found loss of synchronicity of pro- and anti-inflammatory signals seen in dendritic cells and macrophages, as well as increased numbers of regulatory T-cells. Our study shows that a situation mimicking experimental cerebral malaria (ECM) is induced in co-infected mice due to loss of timing and control over regulatory mechanisms in antigen presenting cells.


Clinical Endocrinology | 2012

High impact loading on the skeleton is associated with a decrease in glucose levels in young men

Peder Wiklund; Anna Nordström; Magnus Högström; Håkan Alfredson; Patrik Engström; Thomas Gustafsson; Paul W. Franks; Peter Nordström

The skeleton has been suggested to be involved in energy metabolism through osteocalcin (OC), an osteoblast‐specific molecule. The objective of this study was to investigate whether high‐impact (HI) exercise stimulating bone formation would lead to changes in glucose and lipid metabolism independent of cardiorespiratory effects and whether OC mediates this association.


European Journal of Organic Chemistry | 2010

Synthesis and Characterization of a Multi Ring‐Fused 2‐Pyridone‐Based Fluorescent Scaffold

Magnus Sellstedt; Anders Nyberg; Erik Rosenbaum; Patrik Engström; Malin Wickström; Joachim Gullbo; Sven Bergström; Lennart B.-Å. Johansson; Fredrik Almqvist

Collaboration


Dive into the Patrik Engström's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge