Johan Normark
Umeå University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Johan Normark.
Proceedings of the National Academy of Sciences of the United States of America | 2007
Johan Normark; Daniel Nilsson; Ulf Ribacke; Gerhard Winter; Kirsten Moll; Craig E. Wheelock; Justus Bayarugaba; Fred Kironde; Thomas G. Egwang; Qijun Chen; Björn Andersson; Mats Wahlgren
An infection with Plasmodium falciparum may lead to severe malaria as a result of excessive binding of infected erythrocytes in the microvasculature. Vascular adhesion is mediated by P. falciparum erythrocyte membrane protein-1 (PfEMP1), which is encoded for by highly polymorphic members of the var-gene family. Here, we profile var gene transcription in fresh P. falciparum trophozoites from Ugandan children with malaria through var-specific DBL1α-PCR amplification and sequencing. A method for subsectioning region alignments into homology areas (MOTIFF) was developed to examine collected sequences. Specific PfEMP1-DBL1α amino acid motifs correlated with rosetting and severe malaria, with motif location corresponding to distinct regions of receptor interaction. The method is potentially applicable to other families of variant proteins and may be useful in identifying sequence-phenotype relationships. The results suggest that certain PfEMP1 sequences are predisposed to inducing severe malaria.
Malaria Journal | 2011
Letusa Albrecht; Kirsten Moll; Karin Blomqvist; Johan Normark; Qijun Chen; Mats Wahlgren
BackgroundThe pathogenicity of Plasmodium falciparum is in part due to the ability of the parasitized red blood cell (pRBC) to adhere to intra-vascular host cell receptors and serum-proteins. Binding of the pRBC is mediated by Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1), a large multi-variant molecule encoded by a family of ≈60 var genes.MethodsThe study of var gene transcription in the parasite clone FCR3S1.2 was performed by semi-quantitative PCR and quantitative PCR (qPCR). The expression of the major PfEMP1 in FCR3S1.2 pRBC was analysed with polyclonal sera in rosette disruption assays and immunofluorecence.ResultsTranscripts from var 1 (FCR3S1.2var1; IT4var 21) and other var genes were detected by semi-quantitative PCR but results from qPCR showed that one var gene transcript dominated over the others (FCR3S1.2var2; IT4var 60). Antibodies raised in rats to the recombinant NTS-DBL1α of var 2 produced in E. coli completely and dose-dependently disrupted rosettes (≈95% at a dilution of 1/5). The sera reacted with the Maurers clefts in trophozoite stages (IFA) and to the infected erythrocyte surface (FACS) indicating that FCR3S1.2var2encodes the dominant PfEMP1 expressed in this parasite.ConclusionThe major transcript in the rosetting model parasite FCR3S1.2 is FCR3S1.2var2 (IT4var 60). The results suggest that this gene encodes the PfEMP1-species responsible for the rosetting phenotype of this parasite. The activity of previously raised antibodies to the NTS-DBL1α of FCR3S1.2var1 is likely due to cross-reactivity with NTS-DBL1α of the var 2 encoded PfEMP1.
Journal of Bacteriology | 2013
Patrik Engström; Bidong D. Nguyen; Johan Normark; Ingela Nilsson; Robert J. Bastidas; Åsa Gylfe; Mikael Elofsson; Kenneth A. Fields; Raphael H. Valdivia; Hans Wolf-Watz; Sven Bergström
Salicylidene acylhydrazides (SAHs) inhibit the type III secretion system (T3S) of Yersinia and other Gram-negative bacteria. In addition, SAHs restrict the growth and development of Chlamydia species. However, since the inhibition of Chlamydia growth by SAH is suppressed by the addition of excess iron and since SAHs have an iron-chelating capacity, their role as specific T3S inhibitors is unclear. We investigated here whether SAHs exhibit a function on C. trachomatis that goes beyond iron chelation. We found that the iron-saturated SAH INP0341 (IS-INP0341) specifically affects C. trachomatis infectivity with reduced generation of infectious elementary body (EB) progeny. Selection and isolation of spontaneous SAH-resistant mutant strains revealed that mutations in hemG suppressed the reduced infectivity caused by IS-INP0341 treatment. Structural modeling of C. trachomatis HemG predicts that the acquired mutations are located in the active site of the enzyme, suggesting that IS-INP0341 inhibits this domain of HemG and that protoporphyrinogen oxidase (HemG) and heme metabolism are important for C. trachomatis infectivity.
Open Forum Infectious Diseases | 2015
Izabella Surowiec; Judy Orikiiriza; Elisabeth Dejin Karlsson; Maria Nelson; Mari Bonde; Patrick Kyamanwa; Ben Karenzi; Sven Bergström; Johan Trygg; Johan Normark
The metabolic profile in paediatric patients suffering from acute P. falciparum malaria carries sufficient information to grade disease severity.
Mbio | 2014
Patrik Engström; K. Syam Krishnan; Bidong D. Ngyuen; Erik Chorell; Johan Normark; Jim Silver; Robert J. Bastidas; Matthew D. Welch; Scott J. Hultgren; Hans Wolf-Watz; Raphael H. Valdivia; Fredrik Almqvist; Sven Bergström
ABSTRACT In a screen for compounds that inhibit infectivity of the obligate intracellular pathogen Chlamydia trachomatis, we identified the 2-pyridone amide KSK120. A fluorescent KSK120 analogue was synthesized and observed to be associated with the C. trachomatis surface, suggesting that its target is bacterial. We isolated KSK120-resistant strains and determined that several resistance mutations are in genes that affect the uptake and use of glucose-6-phosphate (G-6P). Consistent with an effect on G-6P metabolism, treatment with KSK120 blocked glycogen accumulation. Interestingly, KSK120 did not affect Escherichia coli or the host cell. Thus, 2-pyridone amides may represent a class of drugs that can specifically inhibit C. trachomatis infection. IMPORTANCE Chlamydia trachomatis is a bacterial pathogen of humans that causes a common sexually transmitted disease as well as eye infections. It grows only inside cells of its host organism, within a parasitophorous vacuole termed the inclusion. Little is known, however, about what bacterial components and processes are important for C. trachomatis cellular infectivity. Here, by using a visual screen for compounds that affect bacterial distribution within the chlamydial inclusion, we identified the inhibitor KSK120. As hypothesized, the altered bacterial distribution induced by KSK120 correlated with a block in C. trachomatis infectivity. Our data suggest that the compound targets the glucose-6-phosphate (G-6P) metabolism pathway of C. trachomatis, supporting previous indications that G-6P metabolism is critical for C. trachomatis infectivity. Thus, KSK120 may be a useful tool to study chlamydial glucose metabolism and has the potential to be used in the treatment of C. trachomatis infections. Chlamydia trachomatis is a bacterial pathogen of humans that causes a common sexually transmitted disease as well as eye infections. It grows only inside cells of its host organism, within a parasitophorous vacuole termed the inclusion. Little is known, however, about what bacterial components and processes are important for C. trachomatis cellular infectivity. Here, by using a visual screen for compounds that affect bacterial distribution within the chlamydial inclusion, we identified the inhibitor KSK120. As hypothesized, the altered bacterial distribution induced by KSK120 correlated with a block in C. trachomatis infectivity. Our data suggest that the compound targets the glucose-6-phosphate (G-6P) metabolism pathway of C. trachomatis, supporting previous indications that G-6P metabolism is critical for C. trachomatis infectivity. Thus, KSK120 may be a useful tool to study chlamydial glucose metabolism and has the potential to be used in the treatment of C. trachomatis infections.
Genome Announcements | 2014
Haitham Elbir; Pär Larsson; Johan Normark; Mukunda Upreti; Edward I. Korenberg; Christer Larsson; Sven Bergström
ABSTRACT We report the complete genome sequence of Borrelia persica, the causative agent of tick-borne relapsing fever borreliosis on the Asian continent. Its genome of 1,784,979 bp contains 1,850 open reading frames, three ribosomal RNAs, and 32 tRNAs. One clustered regularly interspaced short palindromic repeat (CRISPR) was detected.
Genome Announcements | 2014
Haitham Elbir; Pär Larsson; Mukunda Upreti; Johan Normark; Sven Bergström
ABSTRACT Borrelia hispanica is the etiological pathogen of tick-borne relapsing fever, transmitted to humans by infected Ornithodoros erraticus ticks. Here we present the 1,783,846-bp draft genome sequence, with an average G+C content of 28%. It has 2,140 open reading frames, 3 ribosomal RNAs, and 32 transfer RNAs.
PLOS ONE | 2014
Johan Normark; Maria Nelson; Patrik Engström; Marie Andersson; Rafael Björk; Thomas Moritz; Anna Fahlgren; Sven Bergström
In the Plasmodium infected host, a balance between pro- and anti-inflammatory responses is required to clear the parasites without inducing major host pathology. Clinical reports suggest that bacterial infection in conjunction with malaria aggravates disease and raises both mortality and morbidity in these patients. In this study, we investigated the immune responses in BALB/c mice, co-infected with Plasmodium berghei NK65 parasites and the relapsing fever bacterium Borrelia duttonii. In contrast to single infections, we identified in the co-infected mice a reduction of L-Arginine levels in the serum. It indicated diminished bioavailability of NO, which argued for a dysfunctional endothelium. Consistent with this, we observed increased sequestration of CD8+ cells in the brain as well over expression of ICAM-1 and VCAM by brain endothelial cells. Co-infected mice further showed an increased inflammatory response through IL-1β and TNF-α, as well as inability to down regulate the same through IL-10. In addition we found loss of synchronicity of pro- and anti-inflammatory signals seen in dendritic cells and macrophages, as well as increased numbers of regulatory T-cells. Our study shows that a situation mimicking experimental cerebral malaria (ECM) is induced in co-infected mice due to loss of timing and control over regulatory mechanisms in antigen presenting cells.
Journal of Chromatography A | 2018
Izabella Surowiec; Erik Johansson; Hans Stenlund; Solbritt Rantapää-Dahlqvist; Sven Bergström; Johan Normark; Johan Trygg
Chromatographic systems coupled with mass spectrometry detection are widely used in biological studies investigating how levels of biomolecules respond to different internal and external stimuli. Such changes are normally expected to be of low magnitude and therefore all experimental factors that can influence the analysis need to be understood and minimized. Run order effect is commonly observed and constitutes a major challenge in chromatography-mass spectrometry based profiling studies that needs to be addressed before the biological evaluation of measured data is made. So far there is no established consensus, metric or method that quickly estimates the size of this effect. In this paper we demonstrate how orthogonal projections to latent structures (OPLS®) can be used for objective quantification of the run order effect in profiling studies. The quantification metric is expressed as the amount of variation in the experimental data that is correlated to the run order. One of the primary advantages with this approach is that it provides a fast way of quantifying run-order effect for all detected features, not only internal standards. Results obtained from quantification of run order effect as provided by the OPLS can be used in the evaluation of data normalization, support the optimization of analytical protocols and identification of compounds highly influenced by instrumental drift. The application of OPLS for quantification of run order is demonstrated on experimental data from plasma profiling performed on three analytical platforms: GCMS metabolomics, LCMS metabolomics and LCMS lipidomics.
Malaria Journal | 2017
Izabella Surowiec; Sandra Gouveia-Figueira; Judy Orikiiriza; Elisabeth Lindquist; Mari Bonde; Jimmy Magambo; Charles Muhinda; Sven Bergström; Johan Normark; Johan Trygg
BackgroundOxylipins and endocannabinoids are low molecular weight bioactive lipids that are crucial for initiation and resolution of inflammation during microbial infections. Metabolic complications in malaria are recognized contributors to severe and fatal malaria, but the impact of malaria infection on the production of small lipid derived signalling molecules is unknown. Knowledge of immunoregulatory patterns of these molecules in malaria is of great value for better understanding of the disease and improvement of treatment regimes, since the action of these classes of molecules is directly connected to the inflammatory response of the organism.MethodsDetection of oxylipins and endocannabinoids from plasma samples from forty children with uncomplicated and severe malaria as well as twenty controls was done after solid phase extraction followed by chromatography mass spectrometry analysis. The stable isotope dilution method was used for compound quantification. Data analysis was done with multivariate (principal component analysis (PCA), orthogonal partial least squares discriminant analysis (OPLS-DA®) and univariate approaches (receiver operating characteristic (ROC) curves, t tests, correlation analysis).ResultsForty different oxylipin and thirteen endocannabinoid metabolites were detected in the studied samples, with one oxylipin (thromboxane B2, TXB2) in significantly lower levels and four endocannabinoids (OEA, PEA, DEA and EPEA) at significantly higher levels in infected individuals as compared to controls according to t test analysis with Bonferroni correction. Three oxylipins (13-HODE, 9-HODE and 13-oxo-ODE) were higher in severe compared to uncomplicated malaria cases according to the results from multivariate analysis. Observed changes in oxylipin levels can be connected to activation of cytochrome P450 (CYP) and 5-lipoxygenase (5-LOX) metabolic pathways in malaria infected individuals compared to controls, and related to increased levels of all linoleic acid oxylipins in severe patients compared to uncomplicated ones. The endocannabinoids were extremely responsive to malaria infection with majority of this class of molecules found at higher levels in infected individuals compared to controls.ConclusionsIt was possible to detect oxylipin and endocannabinoid molecules that can be potential biomarkers for differentiation between malaria infected individuals and controls and between different classes of malaria. Metabolic pathways that could be targeted towards an adjunctive therapy in the treatment of malaria were also pinpointed.