Patrik Nordeman
Uppsala University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Patrik Nordeman.
Journal of Organic Chemistry | 2012
Patrik Nordeman; Luke R. Odell; Mats Larhed
A bridged two-vial system aminocarbonylation protocol where Mo(CO)(6) functions as an external in situ solid source of CO has been developed. For the first time both nitro group containing aryl/heteroaryl iodides and bromides gave good to excellent yields in the Mo(CO)(6)-mediated and palladium(0)-catalyzed conversion to benzamides, while the identical one-vessel protocol afforded extensive reduction of the nitro functionality. The above-mentioned bridged two-compartment protocol furnished good results with both primary amines and secondary amines and sluggish aniline nucleophiles at 65-85 °C reaction temperatures.
Journal of the American Chemical Society | 2015
Thomas L. Andersen; Stig D. Friis; Hélène Audrain; Patrik Nordeman; Gunnar Antoni; Troels Skrydstrup
We describe the successful implementation of palladium-aryl oxidative addition complexes as stoichiometric reagents in carbonylation reactions with (11)CO to produce structurally challenging, pharmaceutically relevant compounds. This method enables the first (11)C-carbonyl labeling of an approved PET tracer, [(11)C]raclopride, for the dopamine D2/D3 receptor by carbonylation with excellent radiochemical purity and yield. Two other molecules, [(11)C]olaparib and [(11)C]JNJ 31020028, were efficiently labeled in this manner. The technique distinguishes itself from existing methods by the markedly improved purity profiles of the tracer molecules produced and provides access to complex structures in synthetically useful yields, hereby offering a viable alternative to other (11)C-labeling strategies.
Journal of Organic Chemistry | 2015
Linda Åkerbladh; Patrik Nordeman; Matyas Wejdemar; Luke R. Odell; Mats Larhed
A palladium-catalyzed CO gas-free carbonylative Sonogashira/cyclization sequence for the preparation of functionalized 4-quinolones from 2-iodoanilines and alkynes via two different protocols is described. The first method (A) yields the cyclized products after only 20 min of microwave (MW) heating at 120 °C. The second method (B) is a gas-free one-pot two-step sequence which runs at room temperature, allowing the use of sensitive substituents (e.g., nitro and bromide groups). For both protocols, molybdenum hexacarbonyl was used as a solid source of CO.
Chemistry: A European Journal | 2015
Patrik Nordeman; Stig D. Friis; Thomas L. Andersen; Hélène Audrain; Mats Larhed; Troels Skrydstrup; Gunnar Antoni
Herein, we present a new rapid, efficient, and low-cost radiosynthetic protocol for the conversion of (11) CO2 to (11) CO and its subsequent application in Pd-mediated reactions of importance for PET applications. This room-temperature methodology, using readily available chemical reagents, is carried out in simple glass vials, thus eliminating the need for expensive and specialized high-temperature equipment to access (11) CO. With this fast and near-quantitative conversion of (11) CO2 into (11) CO, aryl and heteroaryl iodides were easily converted into a broad selection of biologically active amides in radiochemical yields ranging from 29-84 %.
Bioorganic & Medicinal Chemistry | 2011
Fredrik Wångsell; Patrik Nordeman; Jonas Sävmarker; Rikard Emanuelsson; Katarina Jansson; Jimmy Lindberg; Åsa Rosenquist; Bertil Samuelsson; Mats Larhed
Inhibition of the BACE-1 protease enzyme has over the recent decade developed into a promising drug strategy for Alzheimer therapy. In this report, more than 20 new BACE-1 protease inhibitors based on α-phenylnorstatine, α-benzylnorstatine, iso-serine, and β-alanine moieties have been prepared. The inhibitors were synthesized by applying Fmoc solid phase methodology and evaluated for their inhibitory properties. The most potent inhibitor, tert-alcohol containing (R)-12 (IC(50)=0.19μM) was co-crystallized in the active site of the BACE-1 protease, furnishing a novel binding mode in which the N-terminal amine makes a hydrogen bond to one of the catalytic aspartic acids.
Angewandte Chemie | 2017
Thomas L. Andersen; Patrik Nordeman; Heidi F. Christoffersen; Hélène Audrain; Gunnar Antoni; Troels Skrydstrup
A mild and effective method is described for 11 C-labeling of peptides selectively at the N-terminal nitrogen or at internal lysine positions. The presented method relies on the use of specific biphosphine palladium-methyl complexes and their high reactivity towards amino-carbonylation of amine groups in the presence [11 C]carbon monoxide. The protocol facilitates the production of native N-11 C-acetylated peptides, without any structural modifications and has been applied to a selection of bioactive peptides.
ChemistryOpen | 2015
Joanna Strand; Patrik Nordeman; Hadis Honarvar; Mohamed Altai; Anna Orlova; Mats Larhed; Vladimir Tolmachev
Affibody molecules are small scaffold-based affinity proteins with promising properties as probes for radionuclide-based molecular imaging. However, a high reabsorption of radiolabeled Affibody molecules in kidneys is an issue. We have shown that the use of 125I-3-iodo-((4-hydroxyphenyl)ethyl)maleimide (IHPEM) for site-specific labeling of cysteine-containing Affibody molecules provides high tumor uptake but low radioactivity retention in kidneys. We hypothesized that the use of 4-iodophenethylmaleimide (IPEM) would further reduce renal retention of radioactivity because of higher lipophilicity of radiometabolites. An anti-human epidermal growth factor receptor type 2 (HER2) Affibody molecule (ZHER2:2395) was labeled using 125I-IPEM with an overall yield of 45±3 %. 125I-IPEM-ZHER2:2395 bound specifically to HER2-expressing human ovarian carcinoma cells (SKOV-3 cell line). In NMRI mice, the renal uptake of 125I-IPEM-ZHER2:2395 (24±2 and 5.7±0.3 % IA g−1at 1 and 4 h after injection, respectively) was significantly lower than uptake of 125I-IHPEM-ZHER2:2395 (50±8 and 12±2 % IA g−1at 1 and 4 h after injection, respectively). In conclusion, the use of a more lipophilic linker for the radioiodination of Affibody molecules reduces renal radioactivity.
Nuclear Medicine and Biology | 2014
Patrik Nordeman; Sergio Estrada; Luke R. Odell; Mats Larhed; Gunnar Antoni
INTRODUCTION The enzyme β-secretase 1 (BACE-1) is associated with the catalytic cleavage of amyloid precursor protein (APP) which leads to the production of amyloid-β, an amyloidogenic peptide that forms insoluble fibrils and is linked to neurodegeneration and Alzheimers disease (AD). A PET-radioligand for the quantification of BACE-1 would be useful for the understanding of AD. In this report, we describe the synthesis and carbon-11 radiolabeling of a potent hydroxyethylamine BACE-1 enzyme inhibitor (BSI-IV) and its evaluation in vitro and in vivo. METHODS (11)[C]-N(1)-((2S,3R)-4-(cyclopropylamino)-3-hydroxy-1-phenylbutan-2-yl)-5-(N-methylmethyl-sulfonamido)-N(3)-((R)-1-phenylethyl)isophthalamide, a β-secretase inhibitor, denoted here as [(11)C]BSI-IV was synthesized through a palladium-mediated aminocarbonylation with an aryl halide precursor (I or Br) and [(11)C]CO. The effect of different palladium/ligand-complexes on radiochemical yield in the carbonylative reaction was investigated. The binding of the labeled compound to BACE-1 enzyme was studied in vitro by frozen section autoradiography from brains of healthy rats. Dynamic small animal PET-CT studies and ex vivo biodistribution were performed in male rats. RESULTS The halide precursors were synthesized in six steps starting from methyl-3-nitrobenzoate with an overall yield of 21-26%. [(11)C]BSI-IV was obtained in 29±12% decay corrected radiochemical yield (n=12) with a specific activity of 790±155GBq/μmol at the end of synthesis with a radiochemical purity of >99%. The preclinical studies showed that [(11)C]BSI-IV has a rapid metabolism in rat with excretion to the small intestines. CONCLUSION (11)[C]BSI-IV was obtained in sufficient amount and purity to enable preclinical investigation. The preclinical studies showed low specific binding in vitro and fast clearance in vivo and a low uptake in the brain. These findings suggests that [(11)C]BSI-IV has limited use as a PET-ligand for the study of BACE-1 or AD.
Molecules | 2017
Sara Roslin; Peter Brandt; Patrik Nordeman; Mats Larhed; Luke R. Odell; Jonas Eriksson
Positron emission tomography is an imaging technique with applications in clinical settings as well as in basic research for the study of biological processes. A PET tracer, a biologically active molecule where a positron-emitting radioisotope such as carbon-11 has been incorporated, is used for the studies. Development of robust methods for incorporation of the radioisotope is therefore of the utmost importance. The urea functional group is present in many biologically active compounds and is thus an attractive target for incorporation of carbon-11 in the form of [11C]carbon monoxide. Starting with amines and [11C]carbon monoxide, both symmetrical and unsymmetrical 11C-labelled ureas were synthesised via a palladium(II)-mediated oxidative carbonylation and obtained in decay-corrected radiochemical yields up to 65%. The added advantage of using [11C]carbon monoxide was shown by the molar activity obtained for an inhibitor of soluble epoxide hydrolase (247 GBq/μmol–319 GBq/μmol). DFT calculations were found to support a reaction mechanism proceeding through an 11C-labelled isocyanate intermediate.
ACS Medicinal Chemistry Letters | 2016
Patrik Nordeman; Leif B. G. Johansson; Marcus Bäck; Sergio Estrada; Håkan Hall; Daniel Sjölander; Gunilla T. Westermark; Per Westermark; Lars Nilsson; Per Hammarström; K. Peter R. Nilsson; Gunnar Antoni
Three oligothiophenes were evaluated as PET ligands for the study of local and systemic amyloidosis ex vivo using tissue from patients with amyloid deposits and in vivo using healthy animals and PET-CT. The ex vivo binding studies revealed that all three labeled compounds bound specifically to human amyloid deposits. Specific binding was found in the heart, kidney, liver, and spleen. To verify the specificity of the oligothiophenes toward amyloid deposits, tissue sections with amyloid pathology were stained using the fluorescence exhibited by the compounds and evaluated with multiphoton microscopy. Furthermore, a in vivo monkey PET-CT study showed very low uptake in the brain, pancreas, and heart of the healthy animal indicating low nonspecific binding to healthy tissue. The biological evaluations indicated that this is a promising group of compounds for the visualization of systemic and localized amyloidosis.