Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Patrizia Ballerini is active.

Publication


Featured researches published by Patrizia Ballerini.


International Journal of Developmental Neuroscience | 2001

Involvement of astrocytes in purine-mediated reparative processes in the brain

R. Ciccarelli; Patrizia Ballerini; G Sabatino; Michel P. Rathbone; Mara D'Onofrio; Francesco Caciagli; P. Di Iorio

Astrocytes are involved in multiple brain functions in physiological conditions, participating in neuronal development, synaptic activity and homeostatic control of the extracellular environment. They also actively participate in the processes triggered by brain injuries, aimed at limiting and repairing brain damages. Purines may play a significant role in the pathophysiology of numerous acute and chronic disorders of the central nervous system (CNS). Astrocytes are the main source of cerebral purines. They release either adenine‐based purines, e.g. adenosine and adenosine triphosphate, or guanine‐based purines, e.g. guanosine and guanosine triphosphate, in physiological conditions and release even more of these purines in pathological conditions. Astrocytes express several receptor subtypes of P1 and P2 types for adenine‐based purines. Receptors for guanine‐based purines are being characterised. Specific ecto‐enzymes such as nucleotidases, adenosine deaminase and, likely, purine nucleoside phosphorylase, metabolise both adenine‐ and guanine‐based purines after release from astrocytes. This regulates the effects of nucleotides and nucleosides by reducing their interaction with specific membrane binding sites. Adenine‐based nucleotides stimulate astrocyte proliferation by a P2‐mediated increase in intracellular [Ca2+] and isoprenylated proteins. Adenosine also, via A2 receptors, may stimulate astrocyte proliferation, but mostly, via A1 and/or A3 receptors, inhibits astrocyte proliferation, thus controlling the excessive reactive astrogliosis triggered by P2 receptors. The activation of A1 receptors also stimulates astrocytes to produce trophic factors, such as nerve growth factor, S100β protein and transforming growth factor β, which contribute to protect neurons against injuries. Guanosine stimulates the output of adenine‐based purines from astrocytes and in addition it directly triggers these cells to proliferate and to produce large amount of neuroprotective factors. These data indicate that adenine‐ and guanine‐based purines released in large amounts from injured or dying cells of CNS may act as signals to initiate brain repair mechanisms widely involving astrocytes.


Glia | 1999

Rat cultured astrocytes release guanine-based purines in basal conditions and after hypoxia/hypoglycemia

Renata Ciccarelli; Patrizia Di Iorio; Patricia Giuliani; Iolanda D'Alimonte; Patrizia Ballerini; Francesco Caciagli; Michel P. Rathbone

Brain ischemia stimulates release from astrocytes of adenine‐based purines, particularly adenosine, which is neuroprotective. Guanosine, which has trophic properties that may aid recovery following neurological damage, is present in high local concentrations for several days after focal cerebral ischemia. We investigated whether guanine‐based purines, like their adenine‐based counterparts, were released from astrocytes and whether their release increased following hypoxia/hypoglycemia. HPLC analysis of culture medium of rat astrocytes showed spontaneous release of endogenous guanine‐based purines at a higher rate than their adenine‐based counterparts. The concentration of guanosine (≈120 nM) and adenosine (≈43 nM) in the culture medium remained constant, whereas concentrations of adenine and guanine nucleotides, particularly GMP, and their metabolites increased with time. Exposure of the cultures to hypoxia/hypoglycemia for 30 min increased the extracellular concentration of adenine‐based purines by 2.5‐fold and of guanine‐based purines by 3.5‐fold. Following hypoxia/hypoglycemia extracellular adenine nucleotide levels increased further. Adenosine concentration increased, but not proportionally to nucleotide levels. Accumulation of adenosine metabolites indicated it was rapidly metabolized. Conversely, the concentrations of extracellular guanine‐based nucleotides remained elevated and the concentration of guanosine continued to increase. These data indicate that astrocytes are a major source of guanine‐based purines, the release of which is markedly increased following hypoxia/hypoglycemia, permitting them to exert neurotrophic effects. GLIA 25:93–98, 1999.


Neuroreport | 2002

Glial cells express multiple ATP binding cassette proteins which are involved in ATP release

Patrizia Ballerini; Di Iorio P; Renata Ciccarelli; Nargi E; Iolanda D'Alimonte; Traversa U; Michel P. Rathbone; Francesco Caciagli

Rat brain astrocyte and microglia cultures express different members of ATP-binding-cassette (ABC) proteins. RT-PCR analysis showed that astrocytes are equipped with P-glycoprotein (mdr1a, mdr1b), multidrug resistance-associated-protein (mrp1, mrp4, mrp5) and cystic fibrosis transmembrane conductance regulator (CFTR). No transcripts for mrp5 and CFTR were detected in microglia. The ABC protein functional activities are shown by the following results: (i) cyclosporin A (50 μM), verapamil (50 μM), probenecid (1 mM) or sulfinpyrazone (2 mM) enhanced [3H]vincristine accumulation; (ii) cyclosporin A or verapamil but not probenecid or sulfinpyrazone enhanced [3H]digoxin accumulation; (iii) glibenclamide (100 μM) inhibited 36Clefflux from astrocytes. ATP release from glial cells was inhibited by the pretreatment with ABC protein inhibitors indicating that ABC proteins are involved in nucleotide efflux from glial cells which represent the main source of cerebral extracellular purines.


Glia | 2004

The antiapoptotic effect of guanosine is mediated by the activation of the PI 3-kinase/AKT/PKB pathway in cultured rat astrocytes

Patrizia Di Iorio; Patrizia Ballerini; U. Traversa; Ferdinando Nicoletti; Iolanda D'Alimonte; Sonya Kleywegt; Eva S. Werstiuk; Michel P. Rathbone; Francesco Caciagli; Renata Ciccarelli

Guanosine has many trophic effects in the CNS, including the stimulation of neurotrophic factor synthesis and release by astrocytes, which protect neurons against excitotoxic death. Therefore, we questioned whether guanosine protected astrocytes against apoptosis induced by staurosporine. We evaluated apoptosis in cultured rat brain astrocytes, following exposure (3 h) to 100 nM staurosporine by acridine orange staining or by oligonucleosome, or caspase‐3 ELISA assays. Staurosporine promoted apoptosis rapidly, reaching its maximal effect (∼ 10‐fold over basal apoptotic values) in 18–24 h after its administration to astrocytes. Guanosine, added to the culture medium for 4 h, starting from 1 h prior to staurosporine, reduced the proportion of apoptotic cells in a concentration‐dependent manner. The IC50 value for the inhibitory effect of guanosine is 7.5 × 10−5 M. The protective effect of guanosine was not affected by inhibiting the nucleoside transporters by propentophylline, or by the selective antagonists of the adenosine A1 or A2 receptors (DPCPX or DMPX), or by an antagonist of the P2X and P2Y purine receptors (suramin). In contrast, pretreatment of astrocytes with pertussis toxin, which uncouples Gi‐proteins from their receptors, abolished the antiapoptotic effect of guanosine. The protective effect of guanosine was also reduced by pretreatment of astrocytes with inhibitors of the phosphoinositide 3‐kinase (PI3K; LY294002, 30 μM) or the MAPK pathway (PD98059, 10 μM). Addition of guanosine caused a rapid phosphorylation of Akt/PKB, and glycogen synthase kinase‐3β (GSK‐3β) and induced an upregulation of Bcl‐2 mRNA and protein expression. These data demonstrate that guanosine protects astrocytes against staurosporine‐induced apoptosis by activating multiple pathways, and these are mediated by a Gi‐protein‐coupled putative guanosine receptor.


Molecular Pharmacology | 2007

Molecular signalling mediating the protective effect of A1 adenosine and mGlu3 metabotropic glutamate receptor activation against apoptosis by oxygen/glucose deprivation in cultured astrocytes

Renata Ciccarelli; Iolanda D'Alimonte; Patrizia Ballerini; Mariagrazia D'Auro; Eleonora Nargi; Silvana Buccella; Patrizia Di Iorio; Valeria Bruno; Ferdinando Nicoletti; Francesco Caciagli

Astrocyte death may occur in neurodegenerative disorders and complicates the outcome of brain ischemia, a condition associated with high extracellular levels of adenosine and glutamate. We show that pharmacological activation of A1 adenosine and mGlu3 metabotropic glutamate receptors with N6-chlorocyclopentyladenosine (CCPA) and (–)2-oxa-4-aminocyclo-[3.1.0]hexane-4,6-dicarboxylic acid (LY379268), respectively, protects cultured astrocytes against apoptosis induced by a 3-h exposure to oxygen/glucose deprivation (OGD). Protection by CCPA and LY379268 was less than additive and was abrogated by receptor blockade with selective competitive antagonists or pertussis toxin. Both in control astrocytes and in astrocytes exposed to OGD, CCPA and LY379268 induced a rapid activation of the phosphatidylinositol-3-kinase (PI3K) and extracellular signal-regulated kinases 1 and 2 (ERK1/2)/mitogen-activated protein kinase (MAPK) pathways, which are known to support cell survival. In cultures exposed to OGD, CCPA and LY379268 reduced the activation of c-Jun N-terminal kinase and p38/MAPK, reduced the levels of the proapoptotic protein Bad, increased the levels of the antiapoptotic protein Bcl-XL, and were highly protective against apoptotic death, as shown by nuclear 4′-6-diamidino-2-phenylindole staining and measurements of caspase-3 activity. All of these effects were attenuated by treatment with 1,4-diamino-2,3-dicyano-1,4-bis(methylthio)butadiene (U0126) and 2-(4-morpholinyl)-8-phenyl-1(4H)-benzopyran-4-one hydrochloride (LY294002), which inhibit the MAPK and the PI3K pathways, respectively. These data suggest that pharmacological activation of A1 and mGlu3 receptors protects astrocytes against hypoxic/ischemic damage by stimulating the PI3K and ERK1/2 MAPK pathways.


Clinical Epigenetics | 2015

Epigenetics and male reproduction: the consequences of paternal lifestyle on fertility, embryo development, and children lifetime health

Liborio Stuppia; Marica Franzago; Patrizia Ballerini; Valentina Gatta; Ivana Antonucci

The correlation between epigenetics and human reproduction represents a very interesting field of study, mainly due to the possible transgenerational effects related to epigenetic modifications of male and female gametes. In the present review, we focused our attention to the role played by epigenetics on male reproduction, evidencing at least four different levels at which sperm epigenetic modifications could affect reproduction: (1) spermatogenesis failure; (2) embryo development; (3) outcome of assisted reproduction technique (ART) protocols, mainly as concerning genomic imprinting; and (4) long-term effects during the offspring lifetime. The environmental agents responsible for epigenetic modifications are also examined, suggesting that the control of paternal lifestyle prior to conception could represent in the next future a novel hot topic in the management of human reproduction.


European Journal of Neuroscience | 2004

Cysteinyl-leukotrienes are released from astrocytes and increase astrocyte proliferation and glial fibrillary acidic protein via cys-LT1 receptors and mitogen-activated protein kinase pathway

Renata Ciccarelli; Iolanda D'Alimonte; Clara Santavenere; Mariagrazia D'Auro; Patrizia Ballerini; Eleonora Nargi; Silvana Buccella; Nicosia Folco, Simonetta, Giancarlo; Francesco Caciagli; Patrizia Di Iorio

Cysteinyl‐leukotrienes (cys‐LTs), potent mediators in inflammatory diseases, are produced by nervous tissue, but their cellular source and role in the brain are not very well known. In this report we have demonstrated that rat cultured astrocytes express the enzymes (5′‐lipoxygenase and LTC4 synthase) required for cys‐LT production, and release cys‐LTs in resting condition and, to a greater extent, in response to calcium ionophore A23187, 1 h combined oxygen–glucose deprivation or 2‐methyl‐thioATP, a selective P2Y1/ATP receptor agonist. MK‐886, a LT synthesis inhibitor, prevented basal and evoked cys‐LT release. In addition, 2‐methyl‐thioATP‐induced cys‐LT release was abolished by suramin, a P2 receptor antagonist, or by inhibitors of ATP binding cassette proteins involved in cys‐LT release. We also showed that astrocytes express cys‐LT1 and not cys‐LT2 receptors. The stimulation of these receptors by LTD4 activated the mitogen‐activated protein kinase (MAPK) pathway. This effect was: (i) insensitive to inhibitors of receptor‐coupled Gi protein (pertussis toxin) or tyrosine kinase receptors (genistein); (ii) abolished by MK‐571, a cys‐LT1 selective receptor antagonist, or PD98059, a MAPK inhibitor; (iii) reduced by inhibitors of calcium/calmodulin‐dependent kinase II (KN‐93), Ca2+‐dependent and ‐independent (GF102903X) or Ca2+‐dependent (Gö6976) protein kinase C isoforms. LTD4 also increased astrocyte proliferation and glial fibrillary acidic protein content, which are considered hallmarks of reactive astrogliosis. Both effects were counteracted by cell pretreatment with MK‐571 or PD98059. Thus, cys‐LTs released from astrocytes might play an autocrine role in the induction of reactive astrogliosis that, in brain injuries, contributes to the formation of a reparative glial scar.


International Journal of Immunopathology and Pharmacology | 2005

P2Y1 and cysteinyl leukotriene receptors mediate purine and cysteinyl leukotriene co-release in primary cultures of rat microglia.

Patrizia Ballerini; Di Iorio P; Renata Ciccarelli; Francesco Caciagli; Poli A; Beraudi A; Silvana Buccella; Iolanda D'Alimonte; D'Auro M; Nargi E; Patricelli P; Visini D; Traversa U

Inflammation is widely recognized as contributing to the pathology of acute and chronic neurodegenerative conditions. Microglial cells are pathologic sensors in the brain and activated microglia have been viewed as detrimental. Leukotriene, including cysteinyl leukotrienes (CysLTs) are suggested to be involved in brain inflammation and neurological diseases and ATP, by its receptors is a candidate for microglia activation. A23187 (10μM) stimulated microglia to co-release CysLTs and [3H]adenine based purines ([3H]ABPs), mainly ATP. The biosynthetic production of CysLTs was abolished by 10μM MK-886, an inhibitor of 5-lipoxygenase-activating protein activity. RT-PCR analysis showed that microglia expressed both CysLT1 / CysLT2 receptors, P2Y1 ATP-receptors and several members of the ATP binding cassette (ABC) transporters including MRP1, MRP4 and Pgp. The increase in [Ca2+]i elicited by LTD4 (0.1 μM) and 2MeSATP (100μM), agonists for CysLT- and P2Y1-receptors, was abolished by the respective antagonists, BAYu9773 (0.5 μM) and suramin (50 μM). The stimulation of both receptor subtypes, induced a concomitant increase in the release of both [3H]ABPs and CysLTs that was blocked by the antagonists and significantly reduced by a cocktail of ABC transporter inhibitors, BAPTA/AM (intracellular Ca2+ chelator) and staurosporine (0.1 μM, PKC blocker). P2Y antagonist was unable to antagonise the effects of LTD4 and BAYu9773 did not reduce the effects of 2MeSATP. These data suggest that: i) the efflux of purines and cysteinyl-leukotrienes is specifically and independently controlled by the two receptor types, ii) calcium, PKC and the ABC transporter system can reasonably be considered common mechanisms underlying the release of ABPs and CysLTs from microglia. The blockade of P2Y1 or CysLT1/CysLT2 receptors by specific antagonists that abolished the raise in [Ca2+]i and drastically reduced the concomitant efflux of both compounds, as well as the effects of BAPTA and staurosporine support this hypothesis. In conclusion, the data of the present study suggest a cross talk between the purine and leukotriene systems in a possible autocrine/paracrine control of the microglia-mediated initiation and progression of an inflammatory response.


International Journal of Immunopathology and Pharmacology | 2005

P2X7 receptor activation in rat brain cultured astrocytes increases the biosynthetic release of cysteinyl leukotrienes.

Patrizia Ballerini; Renata Ciccarelli; Francesco Caciagli; Michel P. Rathbone; Werstiuk Es; Traversa U; Silvana Buccella; Patricia Giuliani; Jang S; Nargi E; Visini D; Santavenere C; Di Iorio P

Astrocytes have been recognized as important elements in controlling inflammatory as well as immune processes in the central nervous system (CNS). Recently, glial cells have been shown to produce cysteinyl leukotrienes (CysLTs) which are known lipid mediators of inflammation and whose extracellular concentrations rise under different pathological conditions in the brain. In the same conditions also extracellular concentrations of ATP dramatically increase reaching levels able to activate P2X7 ionotropic receptors for which an emerging role in neuroinflammation and neurodegeneration has been claimed. RT-PCR analysis showed that primary cultures of rat brain astrocytes express P2X7 receptors. Application of the selective P2X7 agonist benzoyl-benzolyATP (BzATP) markedly increased [Ca2+]i which was mediated by a calcium influx from the extracellular milieu. The P2X7 antagonist, oATP, suppressed the BzATP-induced calcium increase. Consistent with the evidence that increased calcium levels activate the leukotriene biosynthetic pathway, challenge of astrocytes with either the calcium ionophore A23187 or BzATP significantly increased CysLT production and the cell pre-treatment with EGTA abolished these effects. Again the P2X7 antagonist prevented the BzATP-mediated CysLT efflux, whereas the astrocyte pre-treatment with MK-571, a CysLT, receptor antagonist, was ineffective. The astrocyte pre-treatment with a cocktail of inhibitors of ATP binding cassette (ABC) proteins reduced the BzATP-mediated CysLT production confirming that ABC transporters are involved in the release of CysLTs. The astrocyte P2X7-evoked rise of CysLT efflux was abolished in the presence of MK-886, an inhibitor of 5-lipoxygenase activating protein (FLAP) whose expression, along with that of 5′-lipoxygenase (5-LO) was reported by Northern Blot analysis. The stimulation of P2X7 induced an up-regulation of FLAP mRNA that was reduced by the antagonist oATP. These data suggest that in rat brain cultured astrocytes P2X7 ATP receptors may participate in the control of CysLT release thus further supporting a role for extracellular ATP as an integral component of the inflammatory brain response.


Neuroscience Letters | 2007

Staurosporine-induced apoptosis in astrocytes is prevented by A1 adenosine receptor activation

Iolanda D’Alimonte; Patrizia Ballerini; Eleonora Nargi; Silvana Buccella; Patricia Giuliani; Patrizia Di Iorio; Francesco Caciagli; Renata Ciccarelli

Astrocyte apoptosis occurs in acute and chronic pathological processes at the central nervous system and the prevention of astrocyte death may represent an efficacious intervention in protecting neurons against degeneration. Our research shows that rat astrocyte exposure to 100 nM staurosporine for 3h caused apoptotic death accompanied by caspase-3, p38 mitogen-ed protein kinase (MAPK) and glycogen synthase kinase-3beta (GSK3beta) activation. N(6)-chlorocyclopentyladenosine (CCPA, 2.5-75 nM), a selective agonist of A(1) adenosine receptors, added to the cultures 1h prior to staurosporine, induced a dose-dependent anti-apoptotic effect, which was inhibited by the A(1) receptor antagonist, 8-cyclopentyl-1,3-dipropylxanthine. CCPA also caused a dose- and time-dependent phosphorylation/activation of Akt, a downstream effector of cell survival promoting phosphatidylinositol 3-kinase (PI3K) pathway, which in turn led to inhibition of staurosporine-induced GSK3beta and p38 MAPK activity. Accordingly, the anti-apoptotic effect of CCPA was abolished by culture pre-treatment with LY294002, a selective PI3K inhibitor, pointing out the prevailing role played by PI3K pathway in the protective effect exerted by A(1) receptor activation. Since an abnormal p38 and GSK3beta activity is implicated in acute (stroke) and chronic (Alzheimers disease) neurodegenerative diseases, the results of the present study provide a hint to better understand adenosine relevance in these disorders.

Collaboration


Dive into the Patrizia Ballerini's collaboration.

Top Co-Authors

Avatar

Francesco Caciagli

University of Chieti-Pescara

View shared research outputs
Top Co-Authors

Avatar

Patricia Giuliani

University of Chieti-Pescara

View shared research outputs
Top Co-Authors

Avatar

Renata Ciccarelli

University of Chieti-Pescara

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Iolanda D'Alimonte

University of Chieti-Pescara

View shared research outputs
Top Co-Authors

Avatar

Patrizia Di Iorio

University of Chieti-Pescara

View shared research outputs
Top Co-Authors

Avatar

Silvana Buccella

University of Chieti-Pescara

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Oriana Trubiani

University of Chieti-Pescara

View shared research outputs
Researchain Logo
Decentralizing Knowledge