Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Silvana Buccella is active.

Publication


Featured researches published by Silvana Buccella.


Molecular Pharmacology | 2007

Molecular signalling mediating the protective effect of A1 adenosine and mGlu3 metabotropic glutamate receptor activation against apoptosis by oxygen/glucose deprivation in cultured astrocytes

Renata Ciccarelli; Iolanda D'Alimonte; Patrizia Ballerini; Mariagrazia D'Auro; Eleonora Nargi; Silvana Buccella; Patrizia Di Iorio; Valeria Bruno; Ferdinando Nicoletti; Francesco Caciagli

Astrocyte death may occur in neurodegenerative disorders and complicates the outcome of brain ischemia, a condition associated with high extracellular levels of adenosine and glutamate. We show that pharmacological activation of A1 adenosine and mGlu3 metabotropic glutamate receptors with N6-chlorocyclopentyladenosine (CCPA) and (–)2-oxa-4-aminocyclo-[3.1.0]hexane-4,6-dicarboxylic acid (LY379268), respectively, protects cultured astrocytes against apoptosis induced by a 3-h exposure to oxygen/glucose deprivation (OGD). Protection by CCPA and LY379268 was less than additive and was abrogated by receptor blockade with selective competitive antagonists or pertussis toxin. Both in control astrocytes and in astrocytes exposed to OGD, CCPA and LY379268 induced a rapid activation of the phosphatidylinositol-3-kinase (PI3K) and extracellular signal-regulated kinases 1 and 2 (ERK1/2)/mitogen-activated protein kinase (MAPK) pathways, which are known to support cell survival. In cultures exposed to OGD, CCPA and LY379268 reduced the activation of c-Jun N-terminal kinase and p38/MAPK, reduced the levels of the proapoptotic protein Bad, increased the levels of the antiapoptotic protein Bcl-XL, and were highly protective against apoptotic death, as shown by nuclear 4′-6-diamidino-2-phenylindole staining and measurements of caspase-3 activity. All of these effects were attenuated by treatment with 1,4-diamino-2,3-dicyano-1,4-bis(methylthio)butadiene (U0126) and 2-(4-morpholinyl)-8-phenyl-1(4H)-benzopyran-4-one hydrochloride (LY294002), which inhibit the MAPK and the PI3K pathways, respectively. These data suggest that pharmacological activation of A1 and mGlu3 receptors protects astrocytes against hypoxic/ischemic damage by stimulating the PI3K and ERK1/2 MAPK pathways.


European Journal of Neuroscience | 2004

Cysteinyl-leukotrienes are released from astrocytes and increase astrocyte proliferation and glial fibrillary acidic protein via cys-LT1 receptors and mitogen-activated protein kinase pathway

Renata Ciccarelli; Iolanda D'Alimonte; Clara Santavenere; Mariagrazia D'Auro; Patrizia Ballerini; Eleonora Nargi; Silvana Buccella; Nicosia Folco, Simonetta, Giancarlo; Francesco Caciagli; Patrizia Di Iorio

Cysteinyl‐leukotrienes (cys‐LTs), potent mediators in inflammatory diseases, are produced by nervous tissue, but their cellular source and role in the brain are not very well known. In this report we have demonstrated that rat cultured astrocytes express the enzymes (5′‐lipoxygenase and LTC4 synthase) required for cys‐LT production, and release cys‐LTs in resting condition and, to a greater extent, in response to calcium ionophore A23187, 1 h combined oxygen–glucose deprivation or 2‐methyl‐thioATP, a selective P2Y1/ATP receptor agonist. MK‐886, a LT synthesis inhibitor, prevented basal and evoked cys‐LT release. In addition, 2‐methyl‐thioATP‐induced cys‐LT release was abolished by suramin, a P2 receptor antagonist, or by inhibitors of ATP binding cassette proteins involved in cys‐LT release. We also showed that astrocytes express cys‐LT1 and not cys‐LT2 receptors. The stimulation of these receptors by LTD4 activated the mitogen‐activated protein kinase (MAPK) pathway. This effect was: (i) insensitive to inhibitors of receptor‐coupled Gi protein (pertussis toxin) or tyrosine kinase receptors (genistein); (ii) abolished by MK‐571, a cys‐LT1 selective receptor antagonist, or PD98059, a MAPK inhibitor; (iii) reduced by inhibitors of calcium/calmodulin‐dependent kinase II (KN‐93), Ca2+‐dependent and ‐independent (GF102903X) or Ca2+‐dependent (Gö6976) protein kinase C isoforms. LTD4 also increased astrocyte proliferation and glial fibrillary acidic protein content, which are considered hallmarks of reactive astrogliosis. Both effects were counteracted by cell pretreatment with MK‐571 or PD98059. Thus, cys‐LTs released from astrocytes might play an autocrine role in the induction of reactive astrogliosis that, in brain injuries, contributes to the formation of a reparative glial scar.


International Journal of Immunopathology and Pharmacology | 2005

P2Y1 and cysteinyl leukotriene receptors mediate purine and cysteinyl leukotriene co-release in primary cultures of rat microglia.

Patrizia Ballerini; Di Iorio P; Renata Ciccarelli; Francesco Caciagli; Poli A; Beraudi A; Silvana Buccella; Iolanda D'Alimonte; D'Auro M; Nargi E; Patricelli P; Visini D; Traversa U

Inflammation is widely recognized as contributing to the pathology of acute and chronic neurodegenerative conditions. Microglial cells are pathologic sensors in the brain and activated microglia have been viewed as detrimental. Leukotriene, including cysteinyl leukotrienes (CysLTs) are suggested to be involved in brain inflammation and neurological diseases and ATP, by its receptors is a candidate for microglia activation. A23187 (10μM) stimulated microglia to co-release CysLTs and [3H]adenine based purines ([3H]ABPs), mainly ATP. The biosynthetic production of CysLTs was abolished by 10μM MK-886, an inhibitor of 5-lipoxygenase-activating protein activity. RT-PCR analysis showed that microglia expressed both CysLT1 / CysLT2 receptors, P2Y1 ATP-receptors and several members of the ATP binding cassette (ABC) transporters including MRP1, MRP4 and Pgp. The increase in [Ca2+]i elicited by LTD4 (0.1 μM) and 2MeSATP (100μM), agonists for CysLT- and P2Y1-receptors, was abolished by the respective antagonists, BAYu9773 (0.5 μM) and suramin (50 μM). The stimulation of both receptor subtypes, induced a concomitant increase in the release of both [3H]ABPs and CysLTs that was blocked by the antagonists and significantly reduced by a cocktail of ABC transporter inhibitors, BAPTA/AM (intracellular Ca2+ chelator) and staurosporine (0.1 μM, PKC blocker). P2Y antagonist was unable to antagonise the effects of LTD4 and BAYu9773 did not reduce the effects of 2MeSATP. These data suggest that: i) the efflux of purines and cysteinyl-leukotrienes is specifically and independently controlled by the two receptor types, ii) calcium, PKC and the ABC transporter system can reasonably be considered common mechanisms underlying the release of ABPs and CysLTs from microglia. The blockade of P2Y1 or CysLT1/CysLT2 receptors by specific antagonists that abolished the raise in [Ca2+]i and drastically reduced the concomitant efflux of both compounds, as well as the effects of BAPTA and staurosporine support this hypothesis. In conclusion, the data of the present study suggest a cross talk between the purine and leukotriene systems in a possible autocrine/paracrine control of the microglia-mediated initiation and progression of an inflammatory response.


International Journal of Immunopathology and Pharmacology | 2005

P2X7 receptor activation in rat brain cultured astrocytes increases the biosynthetic release of cysteinyl leukotrienes.

Patrizia Ballerini; Renata Ciccarelli; Francesco Caciagli; Michel P. Rathbone; Werstiuk Es; Traversa U; Silvana Buccella; Patricia Giuliani; Jang S; Nargi E; Visini D; Santavenere C; Di Iorio P

Astrocytes have been recognized as important elements in controlling inflammatory as well as immune processes in the central nervous system (CNS). Recently, glial cells have been shown to produce cysteinyl leukotrienes (CysLTs) which are known lipid mediators of inflammation and whose extracellular concentrations rise under different pathological conditions in the brain. In the same conditions also extracellular concentrations of ATP dramatically increase reaching levels able to activate P2X7 ionotropic receptors for which an emerging role in neuroinflammation and neurodegeneration has been claimed. RT-PCR analysis showed that primary cultures of rat brain astrocytes express P2X7 receptors. Application of the selective P2X7 agonist benzoyl-benzolyATP (BzATP) markedly increased [Ca2+]i which was mediated by a calcium influx from the extracellular milieu. The P2X7 antagonist, oATP, suppressed the BzATP-induced calcium increase. Consistent with the evidence that increased calcium levels activate the leukotriene biosynthetic pathway, challenge of astrocytes with either the calcium ionophore A23187 or BzATP significantly increased CysLT production and the cell pre-treatment with EGTA abolished these effects. Again the P2X7 antagonist prevented the BzATP-mediated CysLT efflux, whereas the astrocyte pre-treatment with MK-571, a CysLT, receptor antagonist, was ineffective. The astrocyte pre-treatment with a cocktail of inhibitors of ATP binding cassette (ABC) proteins reduced the BzATP-mediated CysLT production confirming that ABC transporters are involved in the release of CysLTs. The astrocyte P2X7-evoked rise of CysLT efflux was abolished in the presence of MK-886, an inhibitor of 5-lipoxygenase activating protein (FLAP) whose expression, along with that of 5′-lipoxygenase (5-LO) was reported by Northern Blot analysis. The stimulation of P2X7 induced an up-regulation of FLAP mRNA that was reduced by the antagonist oATP. These data suggest that in rat brain cultured astrocytes P2X7 ATP receptors may participate in the control of CysLT release thus further supporting a role for extracellular ATP as an integral component of the inflammatory brain response.


Neuroscience Letters | 2007

Staurosporine-induced apoptosis in astrocytes is prevented by A1 adenosine receptor activation

Iolanda D’Alimonte; Patrizia Ballerini; Eleonora Nargi; Silvana Buccella; Patricia Giuliani; Patrizia Di Iorio; Francesco Caciagli; Renata Ciccarelli

Astrocyte apoptosis occurs in acute and chronic pathological processes at the central nervous system and the prevention of astrocyte death may represent an efficacious intervention in protecting neurons against degeneration. Our research shows that rat astrocyte exposure to 100 nM staurosporine for 3h caused apoptotic death accompanied by caspase-3, p38 mitogen-ed protein kinase (MAPK) and glycogen synthase kinase-3beta (GSK3beta) activation. N(6)-chlorocyclopentyladenosine (CCPA, 2.5-75 nM), a selective agonist of A(1) adenosine receptors, added to the cultures 1h prior to staurosporine, induced a dose-dependent anti-apoptotic effect, which was inhibited by the A(1) receptor antagonist, 8-cyclopentyl-1,3-dipropylxanthine. CCPA also caused a dose- and time-dependent phosphorylation/activation of Akt, a downstream effector of cell survival promoting phosphatidylinositol 3-kinase (PI3K) pathway, which in turn led to inhibition of staurosporine-induced GSK3beta and p38 MAPK activity. Accordingly, the anti-apoptotic effect of CCPA was abolished by culture pre-treatment with LY294002, a selective PI3K inhibitor, pointing out the prevailing role played by PI3K pathway in the protective effect exerted by A(1) receptor activation. Since an abnormal p38 and GSK3beta activity is implicated in acute (stroke) and chronic (Alzheimers disease) neurodegenerative diseases, the results of the present study provide a hint to better understand adenosine relevance in these disorders.


European Journal of Neuroscience | 2009

Altered distribution and function of A2A adenosine receptors in the brain of WAG/Rij rats with genetic absence epilepsy, before and after appearance of the disease

Iolanda D’Alimonte; Mariagrazia D’Auro; Rita Citraro; Francesca Biagioni; Shucui Jiang; Eleonora Nargi; Silvana Buccella; Patrizia Di Iorio; Patricia Giuliani; Patrizia Ballerini; Francesco Caciagli; Emilio Russo; Giovambattista De Sarro; Renata Ciccarelli

The involvement of excitatory adenosine A2A receptors (A2ARs), which probably contribute to the pathophysiology of convulsive seizures, has never been investigated in absence epilepsy. Here, we examined the distribution and function of A2ARs in the brain of Wistar Albino Glaxo/Rijswijk (WAG/Rij) rats, a model of human absence epilepsy in which disease onset occurs 2–3 months after birth. In the cerebral areas that are mostly involved in the generation of absence seizures (somatosensory cortex, reticular and ventrobasal thalamic nuclei), A2AR density was lower in presymptomatic WAG/Rij rats than in control rats, as evaluated by immunohistochemistry and western blotting. Accordingly, in cortical/thalamic slices prepared from the brain of these rats, A2AR stimulation with the agonist 2‐[4‐(‐2‐carboxyethyl)‐phenylamino]‐5′‐N‐ethylcarboxamido‐adenosine failed to modulate either cAMP formation, mitogen‐activated protein kinase system, or K+‐evoked glutamate release. In contrast, A2AR expression, signalling and function were significantly enhanced in brain slices from epileptic WAG/Rij rats as compared with matched control animals. Additionally, the in vivo injection of the A2AR agonist CGS21680, or the antagonist 5‐amino‐7‐(2‐phenylethyl)‐2‐(2‐fuyl)‐pyrazolo‐(4,3‐c)1,2,4‐triazolo(1,5‐c)‐pyrimidine, in the examined brain areas of epileptic rats, increased and decreased, respectively, the number/duration of recorded spontaneous spike–wave discharges in a dose‐dependent manner during a 1–5 h post‐treatment period. Our results support the hypothesis that alteration of excitatory A2AR is involved in the pathogenesis of absence seizures and might represent a new interesting target for the therapeutic management of this disease.


International Journal of Immunopathology and Pharmacology | 2007

Activation of P2X(7) receptors stimulates the expression of P2Y(2) receptor mRNA in astrocytes cultured from rat brain.

Iolanda D'Alimonte; Renata Ciccarelli; Di Iorio P; Nargi E; Silvana Buccella; Patricia Giuliani; Michel P. Rathbone; Shucui Jiang; Francesco Caciagli; Patrizia Ballerini

Under pathological conditions brain cells release ATP at concentrations reported to activate P2X7 ionotropic receptor subtypes expressed in both neuronal and glial cells. In the present study we report that the most potent P2X7 receptor agonist BzATP stimulates the expression of the metabotropic ATP receptor P2Y2 in cultured rat brain astrocytes. In other cell types several kinds of stimulation, including stress or injury, induce P2Y2 expression that, in turn, is involved in different cell reactions. Similarly, it has recently been found that in astrocytes and astrocytoma cells P2Y2 sites can trigger neuroprotective pathways through the activation of several mechanisms, including the induction of genes for antiapoptotic factors, neurotrophins, growth factors and neuropeptides. Here we present evidence that P2Y2 mRNA expression in cultured astrocytes peaks 6 h after BzATP exposure and returns to basal levels after 24 h. This effect was mimicked by high ATP concentrations (1 mM) and was abolished by P2X7-antagonists oATP and BBG. The BzATP-evoked P2Y2 receptor up-regulation in cultured astrocytes was coupled to an increased UTP-mediated intracellular calcium response. This effect was inhibited by oATP and BBG and by P2Y2siRNA, thus supporting evidence of increased P2Y2 activity. To further investigate the mechanisms by which P2X7 receptors mediated the P2Y2 mRNA up-regulation, the cells were pre-treated with the chelating agent EGTA, or with inhibitors of mitogen-activated kinase (MAPK) (PD98059) or protein kinase C, (GF109203X). Each inhibitor significantly reduced the extent to which BzATP induced P2Y2 mRNA. Both BzATP and ATP (1 mM) increased ERK1/2 activation. P2X7-induced ERK1/2 phosphorylation was unaffected by pre-treatment of astrocytes with EGTA whereas it was inhibited by GF109203X. Phorbol-12-myristate-13-acetate (PMA), an activator of PKCs, rapidly increased ERK1/2 activation. We conclude that activation of P2X7 receptors in astrocytes enhances P2Y2 mRNA expression by a mechanism involving both calcium influx and PKC/MAPK signalling pathways.


International Journal of Immunopathology and Pharmacology | 2006

P2Y2 receptor up-regulation induced by guanosine or UTP in rat brain cultured astrocytes.

Patrizia Ballerini; Di Iorio P; Francesco Caciagli; Michel P. Rathbone; Shucui Jiang; Nargi E; Silvana Buccella; Patricia Giuliani; Iolanda D'Alimonte; Gemma Fischione; Masciulli A; Silvia Romano; Renata Ciccarelli

Among P2 metabotropic ATP receptors, P2Y2 subtype seems to be peculiar as its upregulation triggers important biological events in different cells types. In non-stimulated cells including astrocytes, P2Y2 receptors are usually expressed at levels lower than P2Y1 sites, however the promoter region of the P2Y2 receptors has not yet been studied and little is known about the mechanisms underlying the regulation of the expression of this ATP receptor. We showed that not only UTP and ATP are the most potent and naturally occurring agonist for P2Y2 sites, but also guanosine induced an up-regulation of astrocyte P2Y2 receptor mRNA evaluated by Northern blot analysis. We also focused our attention on this nucleoside since in our previous studies it was reported to be released by cultured astrocytes and to exert different neuroprotective effects. UTP and guanosine-evoked P2Y2 receptor up-regulation in rat brain cultured astrocytes was linked to an increased P2Y2-mediated intracellular calcium response, thus suggesting an increased P2Y2 activity. Actinomycin D, a RNA polymerase inhibitor, abrogated both UTP and guanosine-mediated P2Y2 up-regulation, thus indicating that de novo transcription was required. The effect of UTP and guanosine was also evaluated in astrocytes pretreated with different inhibitors of signal transduction pathways including ERK, PKC and PKA reported to be involved in the regulation of other cell surface receptor mRNAs. The results show that ERK1-2/MAPK pathway play a key role in the P2Y2 receptor up-regulation mediated by either UTP or guanosine. Moreover, our data suggest that PKA is also involved in guanosine-induced transcriptional activation of P2Y2 mRNA and that increased intracellular calcium levels and PKC activation may also mediate P2Y2 receptor up-regulation triggered by UTP. The extracellular release of ATP under physiological and pathological conditions has been widely studied. On the contrary, little is known about the release of pyrimidines and in particular of UTP. Here we show that astrocytes are able to release UTP, either at rest or during and following hypoxia/hypoglicemia obtained by submitting the cells to glucose-oxygen deprivation (OGD). Interestingly, also P2Y2 receptor mRNA increased by about two-fold the control values when the cultures were submitted to OGD. It has been recently reported that P2Y receptors can play a protective role in astrocytes, thus either guanosine administration or increased extracellular concentrations of guanosine and UTP reached locally following CNS injury may increase P2Y2-mediated biological events aimed at promoting a protective astrocyte response.


Advances in Experimental Medicine and Biology | 2014

Guanosine Protects Glial Cells Against 6-Hydroxydopamine Toxicity

Patricia Giuliani; Patrizia Ballerini; Silvana Buccella; Renata Ciccarelli; Michel P. Rathbone; Silvia Romano; Iolanda D’Alimonte; Francesco Caciagli; Patrizia Di Iorio; M. Pokorski

Increasing body of evidence indicates that neuron-neuroglia interaction may play a key role in determining the progression of neurodegenerative diseases including Parkinsons disease (PD), a chronic pathological condition characterized by selective loss of dopaminergic (DA) neurons in the substantia nigra. We have previously reported that guanosine (GUO) antagonizes MPP(+)-induced cytotoxicity in neuroblastoma cells and exerts neuroprotective effects against 6-hydroxydopamine (6-OHDA) and beta-amyloid-induced apoptosis of SH-SY5Y cells. In the present study we demonstrate that GUO protected C6 glioma cells, taken as a model system for astrocytes, from 6-OHDA-induced neurotoxicity. We show that GUO, either alone or in combination with 6-OHDA activated the cell survival pathways ERK and PI3K/Akt. The involvement of these signaling systems in the mechanism of the nucleoside action was strengthened by a reduction of the protective effect when glial cells were pretreated with U0126 or LY294002, the specific inhibitors of MEK1/2 and PI3K, respectively. Since the protective effect on glial cell death of GUO was not affected by pretreatment with a cocktail of nucleoside transporter blockers, GUO transport and its intracellular accumulation were not at play in our in vitro model of PD. This fits well with our data which pointed to the presence of specific binding sites for GUO on rat brain membranes. On the whole, the results described in the present study, along with our recent evidence showing that GUO when administered to rats via intraperitoneal injection is able to reach the brain and with previous data indicating that it stimulates the release of neurotrophic factors, suggest that GUO, a natural compound, by acting at the glial level could be a promising agent to be tested against neurodegeneration.


Purinergic Signalling | 2006

Guanosine effect on cholesterol efflux and apolipoprotein E expression in astrocytes

Patrizia Ballerini; Renata Ciccarelli; Patrizia Di Iorio; Silvana Buccella; Iolanda D’Alimonte; Patricia Giuliani; Arianna Masciulli; Eleonora Nargi; Alina Beraudi; Michel P. Rathbone; Francesco Caciagli

The main source of cholesterol in the central nervous system (CNS) is represented by glial cells, mainly astrocytes, which also synthesise and secrete apolipoproteins, in particular apolipoprotein E (ApoE), the major apolipoprotein in the brain, thus generating cholesterol-rich high density lipoproteins (HDLs). This cholesterol trafficking, even though still poorly known, is considered to play a key role in different aspects of neuronal plasticity and in the stabilisation of synaptic transmission. Moreover, cell cholesterol depletion has recently been linked to a reduction in amyloid beta formation. Here we demonstrate that guanosine, which we previously reported to exert several neuroprotective effects, was able to increase cholesterol efflux from astrocytes and C6 rat glioma cells in the absence of exogenously added acceptors. In this effect the phosphoinositide 3 kinase/extracellular signal-regulated kinase 1/2 (PI3K/ERK1/2) pathway seems to play a pivotal role. Guanosine was also able to increase the expression of ApoE in astrocytes, whereas it did not modify the levels of ATP-binding cassette protein A1 (ABCA1), considered the main cholesterol transporter in the CNS. Given the emerging role of cholesterol balance in neuronal repair, these effects provide evidence for a role of guanosine as a potential pharmacological tool in the modulation of cholesterol homeostasis in the brain.

Collaboration


Dive into the Silvana Buccella's collaboration.

Top Co-Authors

Avatar

Francesco Caciagli

University of Chieti-Pescara

View shared research outputs
Top Co-Authors

Avatar

Renata Ciccarelli

University of Chieti-Pescara

View shared research outputs
Top Co-Authors

Avatar

Patricia Giuliani

University of Chieti-Pescara

View shared research outputs
Top Co-Authors

Avatar

Patrizia Ballerini

University of Chieti-Pescara

View shared research outputs
Top Co-Authors

Avatar

Patrizia Di Iorio

University of Chieti-Pescara

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eleonora Nargi

University of Chieti-Pescara

View shared research outputs
Top Co-Authors

Avatar

Iolanda D'Alimonte

University of Chieti-Pescara

View shared research outputs
Top Co-Authors

Avatar

Iolanda D’Alimonte

University of Chieti-Pescara

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge