Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Patrizia Campolongo is active.

Publication


Featured researches published by Patrizia Campolongo.


Cell Metabolism | 2008

The Lipid Messenger OEA Links Dietary Fat Intake to Satiety

Gary J. Schwartz; Jin Fu; Giuseppe Astarita; Xiaosong Li; Silvana Gaetani; Patrizia Campolongo; Vincenzo Cuomo; Daniele Piomelli

The association between fat consumption and obesity underscores the need to identify physiological signals that control fat intake. Previous studies have shown that feeding stimulates small-intestinal mucosal cells to produce the lipid messenger oleoylethanolamide (OEA) which, when administered as a drug, decreases meal frequency by engaging peroxisome proliferator-activated receptors-alpha (PPAR-alpha). Here, we report that duodenal infusion of fat stimulates OEA mobilization in the proximal small intestine, whereas infusion of protein or carbohydrate does not. OEA production utilizes dietary oleic acid as a substrate and is disrupted in mutant mice lacking the membrane fatty-acid transporter CD36. Targeted disruption of CD36 or PPAR-alpha abrogates the satiety response induced by fat. The results suggest that activation of small-intestinal OEA mobilization, enabled by CD36-mediated uptake of dietary oleic acid, serves as a molecular sensor linking fat ingestion to satiety.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Endocannabinoids in the rat basolateral amygdala enhance memory consolidation and enable glucocorticoid modulation of memory

Patrizia Campolongo; Benno Roozendaal; Viviana Trezza; Daniela Hauer; Gustav Schelling; James L. McGaugh; Vincenzo Cuomo

Extensive evidence indicates that the basolateral complex of the amygdala (BLA) modulates the consolidation of memories for emotionally arousing experiences, an effect that involves the activation of the glucocorticoid system. Because the BLA expresses high densities of cannabinoid CB1 receptors, the present experiments investigated whether the endocannabinoid system in the BLA influences memory consolidation and whether glucocorticoids interact with this system. The CB1 receptor agonist WIN55,212-2 (5–50 ng per 0.2 μL per side), infused bilaterally into the BLA of male Sprague–Dawley rats immediately after inhibitory avoidance training, induced dose-dependent enhancement of 48-h retention. Conversely, the CB1 receptor antagonist AM251 (0.07–0.28 ng per 0.2 μL per side) administered after training into the BLA induced inhibitory avoidance retention impairment. Furthermore, intra-BLA infusions of a low and nonimpairing dose of AM251 (0.14 ng per 0.2 μL per side) blocked the memory enhancement induced by concurrent administration of WIN55,212-2. Delayed infusions of WIN55,212-2 or AM251 administered into the BLA 3 h after training or immediate posttraining infusions of these drugs into the adjacent central amygdala did not significantly alter retention performance. Last, intra-BLA infusions of a low and otherwise nonimpairing dose of AM251 (0.14 ng per 0.2 μL per side) blocked the memory-enhancing effect induced by systemic administration of corticosterone (3 mg/kg, s.c.). These findings indicate that endocannabinoids in the BLA enhance memory consolidation and suggest that CB1 activity within this brain region is required for enabling glucocorticoid effects on memory consolidation enhancement.


Neuropsychopharmacology | 2006

Anxiolytic-Like Properties of the Anandamide Transport Inhibitor AM404

Marco Bortolato; Patrizia Campolongo; Regina A. Mangieri; Maria Luisa Scattoni; Roberto Frau; Viviana Trezza; Giovanna La Rana; Roberto Russo; Antonio Calignano; Gian Luigi Gessa; Vincenzo Cuomo; Daniele Piomelli

The endocannabinoids anandamide and 2-arachidonoyglycerol (2-AG) may contribute to the regulation of mood and emotion. In this study, we investigated the impact of the endocannabinoid transport inhibitor AM404 on three rat models of anxiety: elevated plus maze, defensive withdrawal and separation-induced ultrasonic vocalizations. AM404 (1–5 mg kg−1, intraperitoneal (i.p.)) exerted dose-dependent anxiolytic-like effects in the three models. These behavioral effects were associated with increased levels of anandamide, but not 2-AG, in the prefrontal cortex and were prevented by the CB1 cannabinoid antagonist rimonabant (SR141716A), suggesting that they were dependent on anandamide-mediated activation of CB1 cannabinoid receptors. We also evaluated whether AM404 might influence motivation (in the conditioned place preference (CPP) test), sensory reactivity (acoustic startle reflex) and sensorimotor gating (prepulse inhibition (PPI) of the startle reflex). In the CPP test, AM404 (1.25–10 mg kg−1, i.p.) elicited rewarding effects in rats housed under enriched conditions, but not in rats kept in standard cages. Moreover, AM404 did not alter reactivity to sensory stimuli or cause overt perceptual distortion, as suggested by its lack of effect on startle or PPI of startle. These results support a role of anandamide in the regulation of emotion and point to the anandamide transport system as a potential target for anxiolytic drugs.


The Journal of Neuroscience | 2010

Functional Interactions between Stress and the Endocannabinoid System: From Synaptic Signaling to Behavioral Output

Matthew N. Hill; Sachin Patel; Patrizia Campolongo; Jeffrey G. Tasker; Carsten T. Wotjak; Jaideep S. Bains

Endocannabinoid signaling is distributed throughout the brain, regulating synaptic release of both excitatory and inhibitory neurotransmitters. The presence of endocannabinoid signaling within stress-sensitive nuclei of the hypothalamus, as well as upstream limbic structures such as the amygdala, suggests it may play an important role in regulating the neuroendocrine and behavioral effects of stress. The evidence reviewed here demonstrates that endocannabinoid signaling is involved in both activating and terminating the hypothalamic-pituitary-adrenal axis response to both acute and repeated stress. In addition to neuroendocrine function, however, endocannabinoid signaling is also recruited by stress and glucocorticoid hormones to modulate cognitive and emotional processes such as memory consolidation and extinction. Collectively, these data demonstrate the importance of endocannabinoid signaling at multiple levels as both a regulator and an effector of the stress response.


Developmental Cognitive Neuroscience | 2011

Evaluating the rewarding nature of social interactions in laboratory animals

Viviana Trezza; Patrizia Campolongo; Louk J. M. J. Vanderschuren

Positive social interactions are essential for emotional well-being, healthy development, establishment and maintenance of adequate social structures and reproductive success of humans and animals. Here, we review the studies that have investigated whether forms of social interaction that occur in different phases of the lifespan of animals, i.e., maternal behavior, social play and sexual interaction are rewarding in rodents and non-human primates. We show that these three forms of social interaction can be used as incentive for place conditioning, lever pressing and maze learning, three setups that have been extensively used to study the rewarding properties of food and drugs of abuse and their neural underpinnings. The experience of positive social interactions during key developmental ages has profound and long-lasting effects on brain function and behavior in emotional, motivational and cognitive domains. For instance, pup interaction is more rewarding than cocaine for early postpartum dams and rats deprived of the opportunity to play during adolescence show social and cognitive impairments at adulthood. Furthermore, sexual behavior is only overtly rewarding when animals can control the rate at which the sexual interaction occurs. Last, we discuss how animal models contributed to our understanding of social reward mechanisms and its psychological components throughout development.


The Journal of Neuroscience | 2012

Endocannabinoids in Amygdala and Nucleus Accumbens Mediate Social Play Reward in Adolescent Rats

Viviana Trezza; Ruth Damsteegt; Antonia Manduca; Stefania Petrosino; Linda W. M. van Kerkhof; R. Jeroen Pasterkamp; Yeping Zhou; Patrizia Campolongo; Vincenzo Cuomo; Vincenzo Di Marzo; Louk J. M. J. Vanderschuren

The brain endocannabinoid system plays a crucial role in emotional processes. We have previously identified an important role for endocannabinoids in social play behavior, a highly rewarding form of social interaction in adolescent rats. Here, we tested the hypothesis that endocannabinoid modulation of social play behavior occurs in brain regions implicated in emotion and motivation. Social play increased levels of the endocannabinoid anandamide in the amygdala and nucleus accumbens (NAc), but not in prefrontal cortex or hippocampus of 4- to 5-week-old male Wistar rats. Furthermore, social play increased phosphorylation of CB1 cannabinoid receptors in the amygdala. Systemic administration of the anandamide hydrolysis inhibitor URB597 increased social play behavior, and augmented the associated elevation in anandamide levels in the amygdala, but not the NAc. Infusion of URB597 into the basolateral amygdala (BLA) increased social play behavior, and blockade of BLA CB1 cannabinoid receptors with the antagonist/inverse agonist SR141716A prevented the play-enhancing effects of systemic administration of URB597. Infusion of URB597 into the NAc also increased social play, but blockade of NAc CB1 cannabinoid receptors did not antagonize the play-enhancing effects of systemic URB597 treatment. Last, SR141716A did not affect social play after infusion into the core and shell subregions of the NAc, while it reduced social play when infused into the BLA. These data show that increased anandamide signaling in the amygdala and NAc augments social play, and identify the BLA as a prominent site of action for endocannabinoids to modulate the rewarding properties of social interactions in adolescent rats.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Fat-induced satiety factor oleoylethanolamide enhances memory consolidation

Patrizia Campolongo; Benno Roozendaal; Viviana Trezza; Vincenzo Cuomo; Giuseppe Astarita; Jin Fu; James L. McGaugh; Daniele Piomelli

The ability to remember contexts associated with aversive and rewarding experiences provides a clear adaptive advantage to animals foraging in the wild. The present experiments investigated whether hormonal signals released during feeding might enhance memory of recently experienced contextual information. Oleoylethanolamide (OEA) is an endogenous lipid mediator that is released when dietary fat enters the small intestine. OEA mediates fat-induced satiety by engaging type-α peroxisome proliferator-activated receptors (PPAR-α) in the gut and recruiting local afferents of the vagus nerve. Here we show that post-training administration of OEA in rats improves retention in the inhibitory avoidance and Morris water maze tasks. These effects are blocked by infusions of lidocaine into the nucleus tractus solitarii (NTS) and by propranolol infused into the basolateral complex of the amygdala (BLA). These findings suggest that the memory-enhancing signal generated by OEA activates the brain via afferent autonomic fibers and stimulates noradrenergic transmission in the BLA. The actions of OEA are mimicked by PPAR-α agonists and abolished in mutant mice lacking PPAR-α. The results indicate that OEA, acting as a PPAR-α agonist, facilitates memory consolidation through noradrenergic activation of the BLA, a mechanism that is also critically involved in memory enhancement induced by emotional arousal.


Journal of Pharmacology and Experimental Therapeutics | 2006

Modulation of Neuropathic and Inflammatory Pain by the Endocannabinoid Transport Inhibitor AM404 [N-(4-Hydroxyphenyl)-eicosa-5,8,11,14-tetraenamide]

G. La Rana; R. Russo; Patrizia Campolongo; Marco Bortolato; Regina A. Mangieri; Vincenzo Cuomo; Anna Iacono; G. Mattace Raso; Rosaria Meli; Daniele Piomelli; Antonio Calignano

The endocannabinoid system may serve important functions in the central and peripheral regulation of pain. In the present study, we investigated the effects of the endocannabinoid transport inhibitor AM404 [N-(4-hydroxyphenyl)-eicosa-5,8,11,14-tetraenamide] on rodent models of acute and persistent nociception (intraplantar formalin injection in the mouse), neuropathic pain (sciatic nerve ligation in the rat), and inflammatory pain (complete Freunds adjuvant injection in the rat). In the formalin model, administration of AM404 (1–10 mg/kg i.p.) elicited dose-dependent antinociceptive effects, which were prevented by the CB1 cannabinoid receptor antagonist rimonabant (SR141716A; 1 mg/kg i.p.) but not by the CB2 antagonist SR144528 (1 mg/kg i.p.) or the vanilloid antagonist capsazepine (30 mg/kg i.p.). Comparable effects were observed with UCM707 [N-(3-furylmethyl)-eicosa-5,8,11,14-tetraenamide], another anandamide transport inhibitor. In both the chronic constriction injury and complete Freunds adjuvant model, daily treatment with AM404 (1–10 mg/kg s.c.) for 14 days produced a dose-dependent reduction in nocifensive responses to thermal and mechanical stimuli, which was prevented by a single administration of rimonabant (1 mg/kg i.p.) and was accompanied by decreased expression of cyclooxygenase-2 and inducible nitric-oxide synthase in the sciatic nerve. The results provide new evidence for a role of the endocannabinoid system in pain modulation and point to anandamide transport as a potential target for analgesic drug development.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Glucocorticoids interact with the hippocampal endocannabinoid system in impairing retrieval of contextual fear memory

Piray Atsak; Daniela Hauer; Patrizia Campolongo; Gustav Schelling; James L. McGaugh; Benno Roozendaal

There is extensive evidence that glucocorticoid hormones impair the retrieval of memory of emotionally arousing experiences. Although it is known that glucocorticoid effects on memory retrieval impairment depend on rapid interactions with arousal-induced noradrenergic activity, the exact mechanism underlying this presumably nongenomically mediated glucocorticoid action remains to be elucidated. Here, we show that the hippocampal endocannabinoid system, a rapidly activated retrograde messenger system, is involved in mediating glucocorticoid effects on retrieval of contextual fear memory. Systemic administration of corticosterone (0.3–3 mg/kg) to male Sprague–Dawley rats 1 h before retention testing impaired the retrieval of contextual fear memory without impairing the retrieval of auditory fear memory or directly affecting the expression of freezing behavior. Importantly, a blockade of hippocampal CB1 receptors with AM251 prevented the impairing effect of corticosterone on retrieval of contextual fear memory, whereas the same impairing dose of corticosterone increased hippocampal levels of the endocannabinoid 2-arachidonoylglycerol. We also found that antagonism of hippocampal β-adrenoceptor activity with local infusions of propranolol blocked the memory retrieval impairment induced by the CB receptor agonist WIN55,212–2. Thus, these findings strongly suggest that the endocannabinoid system plays an intermediary role in regulating rapid glucocorticoid effects on noradrenergic activity in impairing memory retrieval of emotionally arousing experiences.


PLOS ONE | 2013

Plasma concentrations of endocannabinoids and related primary fatty acid amides in patients with post-traumatic stress disorder

Daniela Hauer; Gustav Schelling; Hannah Gola; Patrizia Campolongo; Julia Morath; Benno Roozendaal; Gilava Hamuni; Alexander Karabatsiakis; Piray Atsak; Michael Vogeser; Iris-Tatjana Kolassa

Background Endocannabinoids (ECs) and related N-acyl-ethanolamides (NAEs) play important roles in stress response regulation, anxiety and traumatic memories. In view of the evidence that circulating EC levels are elevated under acute mild stressful conditions in humans, we hypothesized that individuals with traumatic stress exposure and post-traumatic stress disorder (PTSD), an anxiety disorder characterized by the inappropriate persistence and uncontrolled retrieval of traumatic memories, show measurable alterations in plasma EC and NAE concentrations. Methods We determined plasma concentrations of the ECs anandamide (ANA) and 2-arachidonoylglycerol (2-AG) and the NAEs palmitoylethanolamide (PEA), oleoylethanolamide (OEA), stearoylethanolamine (SEA), and N-oleoyldopamine (OLDA) by HPLC-MS-MS in patients with PTSD (n = 10), trauma-exposed individuals without evidence of PTSD (n = 9) and in healthy control subjects (n = 29). PTSD was diagnosed according to DSM-IV criteria by administering the Clinician Administered PTSD Scale (CAPS), which also assesses traumatic events. Results Individuals with PTSD showed significantly higher plasma concentrations of ANA (0.48±0.11 vs. 0.36±0.14 ng/ml, p = 0.01), 2-AG (8.93±3.20 vs. 6.26±2.10 ng/ml, p<0.01), OEA (5.90±2.10 vs. 3.88±1.85 ng/ml, p<0.01), SEA (2.70±3.37 vs. 0.83±0.47, ng/ml, p<0.05) and significantly lower plasma levels of OLDA (0.12±0.05 vs. 0.45±0.59 ng/ml, p<0.05) than healthy controls. Moreover, PTSD patients had higher 2-AG plasma levels (8.93±3.20 vs. 6.01±1.32 ng/ml, p = 0.03) and also higher plasma concentrations of PEA (4.06±1.87 vs. 2.63±1.34 ng/ml, p<0.05) than trauma-exposed individuals without evidence of PTSD. CAPS scores in trauma-exposed individuals with and without PTSD (n = 19) correlated positively with PEA (r = 0.55, p = 0.02) and negatively with OLDA plasma levels (r = −0.68, p<0.01). CAPS subscores for intrusions (r = −0.65, p<0.01), avoidance (r = −0.60, p<0.01) and hyperarousal (r = −0.66, p<0.01) were all negatively related to OLDA plasma concentrations. Conclusions PTSD appears to be associated with changes in plasma EC/NAE concentrations. This may have pathophysiological and diagnostic consequences but will need to be reproduced in larger cohorts.

Collaboration


Dive into the Patrizia Campolongo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vincenzo Cuomo

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Maura Palmery

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Benno Roozendaal

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Patrizia Ratano

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Piray Atsak

University of Groningen

View shared research outputs
Researchain Logo
Decentralizing Knowledge