Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michela Servadio is active.

Publication


Featured researches published by Michela Servadio.


European Neuropsychopharmacology | 2014

Strain- and context-dependent effects of the anandamide hydrolysis inhibitor URB597 on social behavior in rats

Antonia Manduca; Michela Servadio; Patrizia Campolongo; Maura Palmery; Luigia Trabace; Louk J. M. J. Vanderschuren; Vincenzo Cuomo; Viviana Trezza

Genetic and environmental factors play an important role in the cannabinoid modulation of motivation and emotion. Therefore, the aim of the present study was to test whether anandamide modulation of social behavior is strain- and context-dependent. We tested the effects of the anandamide hydrolysis inhibitor URB597 on social behavior and 50-kHz ultrasonic vocalizations (USVs) in adolescent and adult Wistar and Sprague-Dawley rats tested in different emotionally arousing conditions (familiarity/unfamiliarity to the test cage, low/high light). Under all experimental conditions, adolescent and adult Sprague-Dawley rats displayed higher levels of social behavior and emitted more 50-kHz USVs than Wistar rats. URB597 enhanced social play behavior in adolescent Wistar rats under all experimental conditions. However, URB597 only increased social interaction in adult Wistar rats under unfamiliar/high light conditions. URB597 did not affect adolescent social play behavior and adult social interaction in Sprague-Dawley rats under any experimental condition. Moreover, URB597 increased the USVs emitted during social interaction by adolescent Wistar and adult Sprague-Dawley rats tested under familiar/high light and unfamiliar/high light, respectively. These results show that anandamide has distinct roles in adolescent and adult social behaviors. Anandamide modulation of adolescent social play behavior is strain- but not context-dependent. Conversely, anandamide modulation of adult social behavior and USV emission depends upon both strain and experimental context. Furthermore, these results confirm that profound behavioral differences exist between Wistar and Sprague-Dawley rats, which may explain the sometimes contradictory effects of cannabinoid drugs on emotionality in different strains of rodents.


Neuropsychopharmacology | 2016

Contrasting Roles of Dopamine and Noradrenaline in the Motivational Properties of Social Play Behavior in Rats

E.J. Marijke Achterberg; Linda W. M. van Kerkhof; Michela Servadio; Maaike Van Swieten; Danielle J Houwing; Mandy Aalderink; Nina V. Driel; Viviana Trezza; Louk J. M. J. Vanderschuren

Social play behavior, abundant in the young of most mammalian species, is thought to be important for social and cognitive development. Social play is highly rewarding, and as such, the expression of social play depends on its pleasurable and motivational properties. Since the motivational properties of social play have only sporadically been investigated, we developed a setup in which rats responded for social play under a progressive ratio schedule of reinforcement. Dopaminergic neurotransmission plays a key role in incentive motivational processes, and both dopamine and noradrenaline have been implicated in the modulation of social play behavior. Therefore, we investigated the role of dopamine and noradrenaline in the motivation for social play. Treatment with the psychostimulant drugs methylphenidate and cocaine increased responding for social play, but suppressed its expression during reinforced play periods. The dopamine reuptake inhibitor GBR-12909 increased responding for social play, but did not affect its expression, whereas the noradrenaline reuptake inhibitor atomoxetine decreased responding for social play as well as its expression. The effects of methylphenidate and cocaine on responding for social play, but not their play-suppressant effects, were blocked by pretreatment with the dopamine receptor antagonist α-flupenthixol. In contrast, pretreatment with the α2-adrenoceptor antagonist RX821002 prevented the play-suppressant effect of methylphenidate, but left its effect on responding for social play unaltered. In sum, the present study introduces a novel method to study the incentive motivational properties of social play behavior in rats. Using this paradigm, we demonstrate dissociable roles for dopamine and noradrenaline in social play behavior: dopamine stimulates the motivation for social play, whereas noradrenaline negatively modulates the motivation for social play behavior and its expression.


Translational Psychiatry | 2016

Targeting anandamide metabolism rescues core and associated autistic-like symptoms in rats prenatally exposed to valproic acid

Michela Servadio; Francesca Melancia; Antonia Manduca; A di Masi; Sara Schiavi; V Cartocci; Valentina Pallottini; Patrizia Campolongo; Paolo Ascenzi; Viviana Trezza

Autism spectrum disorders (ASD) are characterized by altered sociability, compromised communication and stereotyped/repetitive behaviors, for which no specific treatments are currently available. Prenatal exposure to valproic acid (VPA) is a known, although still underestimated, environmental risk factor for ASD. Altered endocannabinoid activity has been observed in autistic patients, and endocannabinoids are known to modulate behavioral traits that are typically affected in ASD. On this basis, we tested the hypothesis that changes in the endocannabinoid tone contribute to the altered phenotype induced by prenatal VPA exposure in rats, with focus on behavioral features that resemble the core and associated symptoms of ASD. In the course of development, VPA-exposed rats showed early deficits in social communication and discrimination, compromised sociability and social play behavior, stereotypies and increased anxiety, thus providing preclinical proof of the long-lasting deleterious effects induced by prenatal VPA exposure. At the neurochemical level, VPA-exposed rats displayed altered phosphorylation of CB1 cannabinoid receptors in different brain areas, associated with changes in anandamide metabolism from infancy to adulthood. Interestingly, enhancing anandamide signaling through inhibition of its degradation rescued the behavioral deficits displayed by VPA-exposed rats at infancy, adolescence and adulthood. This study therefore shows that abnormalities in anandamide activity may underlie the deleterious impact of environmental risk factors on ASD-relevant behaviors and that the endocannabinoid system may represent a therapeutic target for the core and associated symptoms displayed by autistic patients.


European Neuropsychopharmacology | 2015

Distinct roles of the endocannabinoids anandamide and 2-arachidonoylglycerol in social behavior and emotionality at different developmental ages in rats

Antonia Manduca; Maria Morena; Patrizia Campolongo; Michela Servadio; Maura Palmery; Luigia Trabace; Matthew N. Hill; Louk J. M. J. Vanderschuren; Vincenzo Cuomo; Viviana Trezza

To date, our understanding of the relative contribution and potential overlapping roles of the endocannabinoids anandamide (AEA) and 2-arachidonoylglycerol (2-AG) in the regulation of brain function and behavior is still limited. To address this issue, we investigated the effects of systemic administration of JZL195, that simultaneously increases AEA and 2-AG signaling by inhibiting their hydrolysis, in the regulation of socio-emotional behavior in adolescent and adult rats. JZL195, administered at the dose of 0.01mg/kg, increased social play behavior, that is the most characteristic social activity displayed by adolescent rats, and increased social interaction in adult animals. At both ages, these behavioral effects were antagonized by the CB1 cannabinoid receptor antagonist SR141716A and were associated with increased brain levels of 2-AG, but not AEA. Conversely, at the dose of 1mg/kg, JZL195 decreased general social exploration in adolescent rats without affecting social play behavior, and induced anxiogenic-like effects in the elevated plus-maze test both in adolescent and adult animals. These effects, mediated by activation of CB1 cannabinoid receptors, were paralleled by simultaneous increase in AEA and 2-AG levels in adolescent rats, and by an increase of only 2-AG levels in adult animals. These findings provide the first evidence for a role of 2-AG in social behavior, highlight the different contributions of AEA and 2-AG in the modulation of emotionality at different developmental ages and suggest that pharmacological inhibition of AEA and 2-AG hydrolysis is a useful approach to investigate the role of these endocannabinoids in neurobehavioral processes.


Neuropsychopharmacology | 2016

Dopaminergic Neurotransmission in the Nucleus Accumbens Modulates Social Play Behavior in Rats

Antonia Manduca; Michela Servadio; Ruth Damsteegt; Patrizia Campolongo; Louk J. M. J. Vanderschuren; Viviana Trezza

Social play behavior is a highly rewarding form of social interaction displayed by young mammals. Social play is important for neurobehavioral development and it has been found to be impaired in several developmental psychiatric disorders. In line with the rewarding properties of social play, we have previously identified the nucleus accumbens (NAc) as an important site of action for endocannabinoid and opioid modulation of this behavior. NAc dopamine has a well-known role in certain components of reward processes, such as incentive motivation. However, its contribution to the positive emotional aspects of social interactions is less clear. Therefore, we investigated the role of dopaminergic neurotransmission in the NAc in social play behavior in rats. We found that intra-NAc infusion of the dopamine releaser/reuptake inhibitor amphetamine increased social play behavior that was dependent on activation of both D1 and D2 dopamine receptors. This increase in social play behavior was mimicked by intra-NAc infusion of the dopamine receptor agonist apomorphine, but not of the dopamine reuptake inhibitor GBR-12909. Blockade of either D1 or D2 NAc dopamine receptors reduced social play in animals highly motivated to play as a result of longer social isolation before testing. Last, blockade of NAc dopamine receptors prevented the play-enhancing effects of endocannabinoid and opioid receptor stimulation. These findings demonstrate an important modulatory role of NAc dopaminergic neurotransmission in social play. Thus, functional activity in the mesolimbic dopamine pathway plays an important role in adaptive social development, whereas abnormal NAc dopamine function may underlie the social impairments observed in developmental psychiatric disorders such as autism, attention deficit hyperactivity disorder or early-onset schizophrenia.


Behavioural Pharmacology | 2015

Modeling autism-relevant behavioral phenotypes in rats and mice: Do 'autistic' rodents exist?

Michela Servadio; Louk J. M. J. Vanderschuren; Viviana Trezza

Autism spectrum disorders (ASD) are among the most severe developmental psychiatric disorders known today, characterized by impairments in communication and social interaction and stereotyped behaviors. However, no specific treatments for ASD are as yet available. By enabling selective genetic, neural, and pharmacological manipulations, animal studies are essential in ASD research. They make it possible to dissect the role of genetic and environmental factors in the pathogenesis of the disease, circumventing the many confounding variables present in human studies. Furthermore, they make it possible to unravel the relationships between altered brain function in ASD and behavior, and are essential to test new pharmacological options and their side-effects. Here, we first discuss the concepts of construct, face, and predictive validity in rodent models of ASD. Then, we discuss how ASD-relevant behavioral phenotypes can be mimicked in rodents. Finally, we provide examples of environmental and genetic rodent models widely used and validated in ASD research. We conclude that, although no animal model can capture, at once, all the molecular, cellular, and behavioral features of ASD, a useful approach is to focus on specific autism-relevant behavioral features to study their neural underpinnings. This approach has greatly contributed to our understanding of this disease, and is useful in identifying new therapeutic targets.


Journal of Cellular Physiology | 2017

Can Cholesterol Metabolism Modulation Affect Brain Function and Behavior

Veronica Cartocci; Michela Servadio; Viviana Trezza; Valentina Pallottini

Cholesterol is an important component for cell physiology. It regulates the fluidity of cell membranes and determines the physical and biochemical properties of proteins. In the central nervous system, cholesterol controls synapse formation and function and supports the saltatory conduction of action potential. In recent years, the role of cholesterol in the brain has caught the attention of several research groups since a breakdown of cholesterol metabolism has been associated with different neurodevelopmental and neurodegenerative diseases, and interestingly also with psychiatric conditions. The aim of this review is to summarize the current knowledge about the connection between cholesterol dysregulation and various neurologic and psychiatric disorders based on clinical and preclinical studies. J. Cell. Physiol. 232: 281–286, 2017.


Neuroscience Research | 2016

17β-Estradiol modulates huntingtin levels in rat tissues and in human neuroblastoma cell line

Maria Teresa Nuzzo; Marco Fiocchetti; Michela Servadio; Viviana Trezza; Paolo Ascenzi; Maria Marino

17β-Estradiol (E2) exerts neurotrophic and neuroprotective functions in the brain. Here, E2-induced increased levels of huntingtin (HTT), a protein involved in several crucial neuronal functions is reported. E2 physiological concentrations up-regulate HTT in hippocampus and striatum of rats as well as in human neuroblastoma cells. This effect requires both nuclear and extra-nuclear estrogen receptor (ER)α activities. Intriguingly, HTT silencing completely prevents E2 protective effects against oxidative stress injury. In conclusion, these data indicate for the first time that HTT is an E2-inducible protein involved in the first steps of E2-induced signaling pathways committed to neuronal protection against oxidative stress.


Neuroscience | 2018

Altered Brain Cholesterol/Isoprenoid Metabolism in a Rat Model of Autism Spectrum Disorders

Veronica Cartocci; Martina Catallo; Massimo Tempestilli; Marco Segatto; Frank W. Pfrieger; Maria Rosanna Bronzuoli; Caterina Scuderi; Michela Servadio; Viviana Trezza; Valentina Pallottini

Autism spectrum disorders (ASDs) present a wide range of symptoms characterized by altered sociability, compromised communication and stereotypic/repetitive behaviors. These symptoms are caused by developmental changes, but the mechanisms remain largely unknown. Some lines of evidence suggest an impairment of the cholesterol/isoprenoid metabolism in the brain as a possible cause, but systematic analyses in rodent models of ASDs are lacking. Prenatal exposure to the antiepileptic drug valproate (VPA) is a risk factor for ASDs in humans and generates a well-established model for the disease in rodents. Here, we studied cholesterol/isoprenoid metabolism in different brain areas of infant, adolescent and adult rats prenatally exposed to VPA. VPA-treated rats present autistic-like symptoms, they show changes in cholesterol/isoprenoid homeostasis in some brain areas, a decreased number of oligodendrocytes and impaired myelination in the hippocampus. Together, our data suggest a relation between brain cholesterol/isoprenoid homeostasis and ASDs.


Biomedical Microdevices | 2017

Lipid nanoparticles for administration of poorly water soluble neuroactive drugs

Elisabetta Esposito; Markus Drechsler; Paolo Mariani; Federica Carducci; Michela Servadio; Francesca Melancia; Patrizia Ratano; Patrizia Campolongo; Viviana Trezza; Rita Cortesi; Claudio Nastruzzi

This study describes the potential of solid lipid nanoparticles and nanostructured lipid carriers as nano-formulations to administer to the central nervous system poorly water soluble drugs. Different neuroactive drugs, i.e. dimethylfumarate, retinyl palmitate, progesterone and the endocannabinoid hydrolysis inhibitor URB597 have been studied. Lipid nanoparticles constituted of tristearin or tristearin in association with gliceryl monoolein were produced. The nanoencapsulation strategy allowed to obtain biocompatible and non-toxic vehicles, able to increase the solubility of the considered neuroactive drugs. To improve URB597 targeting to the brain, stealth nanoparticles were produced modifying the SLN surface with polysorbate 80. A behavioural study was conducted in rats to test the ability of SLN containing URB597 given by intranasal administration to alter behaviours relevant to psychiatric disorders. URB597 maintained its activity after nanoencapsulation, suggesting the possibility to propose this kind of vehicle as alternative to unphysiological mixtures usually employed for animal and clinical studies.

Collaboration


Dive into the Michela Servadio's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maura Palmery

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vincenzo Cuomo

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge