Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Patrizia Cioli is active.

Publication


Featured researches published by Patrizia Cioli.


Diabetes Care | 2011

Pharmacokinetics and Pharmacodynamics of Therapeutic Doses of Basal Insulins NPH, Glargine, and Detemir After 1 Week of Daily Administration at Bedtime in Type 2 Diabetic Subjects: A randomized cross-over study

Paola Lucidi; Francesca Porcellati; Paolo Rossetti; Paola Candeloro; Patrizia Cioli; Stefania Marzotti; Anna Marinelli Andreoli; Raffaela Fede; Geremia B. Bolli; Carmine G. Fanelli

OBJECTIVE To compare the pharmacokinetics and pharmacodynamics of NPH, glargine, and detemir insulins in type 2 diabetic subjects. RESEARCH DESIGN AND METHODS This study used a single-blind, three-way, cross-over design. A total of 18 type 2 diabetic subjects underwent a euglycemic clamp for 32 h after a subcutaneous injection of 0.4 units/kg at 2200 h of either NPH, glargine, or detemir after 1 week of bedtime treatment with each insulin. RESULTS The glucose infusion rate area under the curve0–32 h was greater for glargine than for detemir and NPH (1,538 ± 688; 1,081 ± 785; and 1,170 ± 703 mg/kg, respectively; P < 0.05). Glargine suppressed endogenous glucose production more than detemir (P < 0.05) and similarly to NPH (P = 0.16). Glucagon, C-peptide, free fatty acids, and β-hydroxy-butyrate were more suppressed with glargine than detemir. All 18 subjects completed the glargine study, but two subjects on NPH and three on detemir interrupted the study because of plasma glucose >150 mg/dL. CONCLUSIONS Compared with NPH and detemir, glargine provided greater metabolic activity and superior glucose control for up to 32 h.


Diabetes Care | 2012

Metabolism of Insulin Glargine After Repeated Daily Subcutaneous Injections in Subjects With Type 2 Diabetes

Paola Lucidi; Francesca Porcellati; Paolo Rossetti; Paola Candeloro; Anna Marinelli Andreoli; Patrizia Cioli; Annke Hahn; Ronald Schmidt; Geremia B. Bolli; C. Fanelli

OBJECTIVE To investigate concentration of plasma insulin glargine after its subcutaneous dosing compared with concentration of its metabolites 1 (M1) and 2 (M2) in subjects with type 2 diabetes. RESEARCH DESIGN AND METHODS Nine subjects underwent a 32-h euglycemic glucose clamp study (0.4 units/kg glargine after 1 week of daily glargine administration). Glargine, M1, and M2 were measured by a specific liquid chromatography-tandem mass spectrometry assay. RESULTS Glargine was detected in only five of the nine subjects, at few time points, and at negligible concentrations. M1 was detected in all subjects and exhibited the same pattern as traditional radioimmunoassay-measured plasma insulin. M2 was not detected at all. CONCLUSIONS After subcutaneous injection, glargine was minimally detectable in blood, whereas its metabolite M1 accounted for most (>90%) of the plasma insulin concentration and metabolic action of the injected glargine.


Diabetes | 2008

Different Brain Responses to Hypoglycemia Induced by Equipotent Doses of the Long-Acting Insulin Analog Detemir and Human Regular Insulin in Humans

Paolo Rossetti; Francesca Porcellati; Natalia Busciantella Ricci; Paola Candeloro; Patrizia Cioli; Geremia B. Bolli; C. Fanelli

OBJECTIVE—The acylated long-acting insulin analog detemir is more lipophilic than human insulin and likely crosses the blood-to-brain barrier more easily than does human insulin. The aim of these studies was to assess the brain/hypothalamus responses to euglycemia and hypoglycemia in humans during intravenous infusion of equipotent doses of detemir and human insulin. RESEARCH DESIGN AND METHODS—Ten normal, nondiabetic subjects (six men, age 36±7 years, and BMI 22.9±2.6 kg/m2) were studied on four occasions at random during intravenous infusion of either detemir or human insulin in euglycemia (plasma glucose 90 mg/dl) or during stepped hypoglycemia (plasma glucose 90, 78, 66, 54, and 42 mg/dl steps). RESULTS—Plasma counterregulatory hormone response to hypoglycemia did not differ between detemir and human insulin. The glycemic thresholds for adrenergic symptoms were higher with detemir (51 ± 7.7 mg/dl) versus human insulin (56 ± 7.8 mg/dl) (P = 0.029). However, maximal responses were greater with detemir versus human insulin for adrenergic (3 ± 2.5 vs. 2.4 ± 1.8) and neuroglycopenic (4 ± 3.9 vs. 2.7±2.5) symptoms (score, P < 0.05). Glycemic thresholds for onset of cognitive dysfunction were lower with detemir versus human insulin (51 ± 8.1 vs. 47 ± 3.6 mg/dl, P = 0.031), and cognitive function was more deteriorated with detemir versus human insulin (P < 0.05). CONCLUSIONS—Compared with human insulin, responses to hypoglycemia with detemir resulted in higher glycemic thresholds for adrenergic symptoms and greater maximal responses for adrenergic and neuroglycopenic symptoms, with an earlier and greater impairment of cognitive function. Additional studies are needed to establish the effects of detemir on responses to hypoglycemia in subjects with diabetes.


Diabetes | 2008

Effect of Oral Amino Acids on Counterregulatory Responses and Cognitive Function During Insulin-Induced Hypoglycemia in Nondiabetic and Type 1 Diabetic People

Paolo Rossetti; Francesca Porcellati; Natalia Busciantella Ricci; Paola Candeloro; Patrizia Cioli; K. Sreekumaran Nair; Fausto Santeusanio; Geremia B. Bolli; C. Fanelli

OBJECTIVE—Amino acids stimulate glucagon responses to hypoglycemia and may be utilized by the brain. The aim of this study was to assess the responses to hypoglycemia in nondiabetic and type 1 diabetic subjects after ingestion of an amino acid mixture. RESEARCH DESIGN AND METHODS—Ten nondiabetic and 10 diabetic type 1 subjects were studied on three different occasions during intravenous insulin (2 mU · kg−1 · min−1) plus variable glucose for 160 min. In two studies, clamped hypoglycemia (47 mg/dl plasma glucose for 40 min) was induced and either oral placebo or an amino acid mixture (42 g) was given at 30 min. In the third study, amino acids were given, but euglycemia was maintained. RESULTS—Plasma glucose and insulin were no different in the hypoglycemia studies with both placebo and amino acids (P > 0.2). After the amino acid mixture, plasma amino acid concentrations increased to levels observed after a mixed meal (2.4 ± 0.13 vs. placebo study 1.7 ± 0.1 mmol/l, P = 0.02). During clamped euglycemia, ingestion of amino acids resulted in transient increases in glucagon concentrations, which returned to basal by the end of the study. During clamped hypoglycemia, glucagon response was sustained and increased more in amino acid studies versus placebo in nondiabetic and diabetic subjects (P < 0.05), but other counter-regulatory hormones and total symptom score were not different. β-OH-butyrate was less suppressed after amino acids (200 ± 15 vs. 93 ± 9 μmol/l, P = 0.01). Among the cognitive tests administered, the following indicated less deterioration after amino acids than placebo: Trail-Making part B, PASAT (Paced Auditory Serial Addition Test) (2 s), digit span forward, Stroop colored words, and verbal memory tests for nondiabetic subjects; and Trail-Making part B, digit span backward, and Stroop color tests for diabetic subjects. CONCLUSIONS—Oral amino acids improve cognitive function in response to hypoglycemia and enhance the response of glucagon in nondiabetic and diabetic subjects.


Diabetes Care | 2015

Pharmacokinetics and Pharmacodynamics of Insulin Glargine Given in the Evening as Compared With in the Morning in Type 2 Diabetes

Francesca Porcellati; Paola Lucidi; Patrizia Cioli; Paola Candeloro; Anna Marinelli Andreoli; Stefania Marzotti; Maura Ambrogi; Geremia B. Bolli; C. Fanelli

OBJECTIVE To compare pharmacokinetics (PK) and pharmacodynamics (PD) of insulin glargine in type 2 diabetes mellitus (T2DM) after evening versus morning administration. RESEARCH DESIGN AND METHODS Ten T2DM insulin-treated persons were studied during 24-h euglycemic glucose clamp, after glargine injection (0.4 units/kg s.c.), either in the evening (2200 h) or the morning (1000 h). RESULTS The 24-h glucose infusion rate area under the curve (AUC0–24h) was similar in the evening and morning studies (1,058 ± 571 and 995 ± 691 mg/kg × 24 h, P = 0.503), but the first 12 h (AUC0–12h) was lower with evening versus morning glargine (357 ± 244 vs. 593 ± 374 mg/kg × 12 h, P = 0.004), whereas the opposite occurred for the second 12 h (AUC12–24h 700 ± 396 vs. 403 ± 343 mg/kg × 24 h, P = 0.002). The glucose infusion rate differences were totally accounted for by different rates of endogenous glucose production, not utilization. Plasma insulin and C-peptide levels did not differ in evening versus morning studies. Plasma glucagon levels (AUC0–24h 1,533 ± 656 vs. 1,120 ± 344 ng/L/h, P = 0.027) and lipolysis (free fatty acid AUC0–24h 7.5 ± 1.6 vs. 8.9 ± 1.9 mmol/L/h, P = 0.005; β-OH-butyrate AUC0–24h 6.8 ± 4.7 vs. 17.0 ± 11.9 mmol/L/h, P = 0.005; glycerol, P < 0.020) were overall more suppressed after evening versus morning glargine administration. CONCLUSIONS The PD of insulin glargine differs depending on time of administration. With morning administration insulin activity is greater in the first 0–12 h, while with evening administration the activity is greater in the 12–24 h period following dosing. However, glargine PK and plasma C-peptide levels were similar, as well as glargine PD when analyzed by 24-h clock time independent of the time of administration. Thus, the results reflect the impact of circadian changes in insulin sensitivity in T2DM (lower in the night-early morning vs. afternoon hours) rather than glargine per se.


Nutrition Metabolism and Cardiovascular Diseases | 2014

Glargine metabolism over 24 h following its subcutaneous injection in patients with type 2 diabetes mellitus: A dose–response study

Paola Lucidi; Francesca Porcellati; Paola Candeloro; Patrizia Cioli; A. Marinelli Andreoli; Stefania Marzotti; Ronald Schmidt; Geremia B. Bolli; C. Fanelli

BACKGROUND AND AIMS After subcutaneous injection insulin glargine is rapidly metabolized to M1 and M2. In vitro, both M1 and M2 have metabolic effects and bind to IGF-1R similarly to human insulin, whereas glargine exhibits a higher affinity for the IGF-1R and greater mitogenetic effects. The present study was specifically designed to establish the dose-response metabolism of glargine over 24 h following s.c. injection in T2DM subjects on long-term use of glargine. METHODS AND RESULTS Ten subjects with T2DM were studied during 24 h after s.c. injection of 0.4 (therapeutic) and 0.8 (high dose) U/kg of glargine on two separate occasions during euglycaemic clamps (cross-over design). Glargine, M1 and M2 over 24 h period were determined in appropriately processed plasma samples by a specific liquid chromatography-tandem mass spectrometry assay. Plasma M1 concentration (AUC0-24 h) was detected in all subjects and increased by increasing the glargine dose from therapeutic to high dose (p = 0.008). Glargine was detectable in 6 (therapeutic dose) and 9 (high dose) out of the 10 subjects and also increased by increasing the dose (p = 0.031). However, glargine concentration (AUC0-24 h--high dose) represented at most only 9.7% (4.6-15%) of the total amount of insulin measured in the blood. M2 was not detected at all. CONCLUSION In T2DM people on long-term use of insulin glargine, even with higher doses (0.8 U/kg), glargine is nearly totally metabolized to the active metabolite M1. Glargine is often detectable in plasma, but its concentration remains well below that needed in vitro to potentiate IGF-1R binding and mitogenesis.


Diabetes Care | 2011

Differential Effects of Adiposity on Pharmacodynamics of Basal Insulins NPH, Glargine, and Detemir in Type 2 Diabetes Mellitus

Francesca Porcellati; Paola Lucidi; Paolo Rossetti; Paola Candeloro; Anna Marinelli Andreoli; Stefania Marzotti; Patrizia Cioli; Geremia B. Bolli; Carmine G. Fanelli

OBJECTIVE To assess the role of adiposity on the pharmacodynamics of basal insulins NPH, detemir, and glargine in type 2 diabetes mellitus (T2DM), as estimated by glucose infusion rate (GIR) and endogenous glucose production (EGP) rate in the euglycemic clamp. RESEARCH DESIGN AND METHODS We examined the variables that best predicted GIR and EGP in 32-h clamp studies after treatment with subcutaneous injection of 0.4 units/kg NPH, detemir, and glargine in 18 T2DM subjects (crossover). RESULTS A multiple regression analysis revealed that BMI best predicted GIR variation during the clamp. BMI was inversely correlated with GIR in all three insulin treatments, but was statistically significant in detemir treatment only. BMI correlated positively with residual suppression of EGP in detemir, but not with glargine and NPH treatments. CONCLUSIONS Adiposity blunts the pharmacodynamics of all basal insulins in T2DM. However, as adiposity increases, the effect of detemir is lower versus NPH and glargine.


Diabetes | 2009

Portal Vein Glucose Sensors Do Not Play a Major Role in Modulating Physiological Responses to Insulin-Induced Hypoglycemia in Humans

Paolo Rossetti; Francesca Porcellati; Paola Lucidi; Natalia Busciantella Ricci; Paola Candeloro; Patrizia Cioli; Fausto Santeusanio; Geremia B. Bolli; Carmine G. Fanelli

OBJECTIVE—Experimental data from animal studies indicate that portal vein glucose sensors play a key role in the responses to slow-fall hypoglycemia. However, their role in modulating these responses in humans is not well understood. The aim of the present study was to examine in humans the potential role of portal vein glucose sensors in physiological responses to insulin-induced hypoglycemia mimicking the slow fall of insulin-treated diabetic subjects. RESEARCH DESIGN AND METHODS—Ten nondiabetic subjects were studied on two different occasions during intravenous insulin (2 mU · kg−1 · min−1) plus variable glucose for 160 minutes. In both studies, after 60 min of normal plasma glucose concentrations, hypoglycemia (47 mg/dl) was induced slowly (60 min) and maintained for 60 min. Hypoglycemia was preceded by the ingestion of either oral placebo or glucose (28 g) given at 30 min. RESULTS—Plasma glucose and insulin were not different with either placebo or glucose (P > 0.2). Similarly, counterregulatory hormones, substrates, and symptoms were not different with either placebo or glucose. The Stroop color and colored words subtest of the Stroop test deteriorated less (P < 0.05) with glucose than placebo. CONCLUSIONS—In contrast to animals, in humans, prevention of portal hypoglycemia with oral glucose from the beginning of insulin-induced slow-fall hypoglycemia has no effect on sympathoadrenal and symptomatic responses to hypoglycemia.


The Journal of Clinical Endocrinology and Metabolism | 2009

Short-Term Effects of the Long-Acting Insulin Analog Detemir and Human Insulin on Plasma Levels of Insulin-Like Growth Factor-I and Its Binding Proteins in Humans

Francesca Porcellati; Paolo Rossetti; Paola Candeloro; Paola Lucidi; Patrizia Cioli; Anna Marinelli Andreoli; Ezio Ghigo; Geremia B. Bolli; C. Fanelli

OBJECTIVE The objective of the study was to compare responses of plasma levels of IGF-I and IGF binding proteins (IGFBP-1 and IGFBP-3) induced by human regular insulin (HI) and the long-acting insulin analog detemir (IDet) at doses equivalent with respect to the glucose-lowering effect. EXPERIMENTAL DESIGN Ten nondiabetic subjects (six males, four females; age, 36 +/- 7 yr; body mass index, 22.9 +/- 2.6 kg/m(2)) were studied on four randomized occasions with iv infusion of IDet (2 mU/kg . min for 4 h, followed by 4 mU/kg . min for 1 h) or HI (1 mU/kg . min for 4 h, followed by 2 mU/kg . min for 1 h) in euglycemia [plasma glucose (PG), 90 mg/dl] or during stepped hypoglycemia (PG, 90, 78, 66, 54, and 42 mg/dl). RESULTS PG was maintained at preselected plateaus, without any significant difference between IDet and HI (P > 0.2). Plasma insulin concentrations were on average approximately nine times greater with IDet than HI (749 +/- 52 vs. 83 +/- 19 muU/ml, respectively). Plasma IGF-I concentrations did not change from baseline during insulin infusion in euglycemia (IDet, 147 +/- 16 ng/ml; HI, 155 +/- 15 ng/ml) and hypoglycemia (IDet, 163 +/- 14 ng/ml; HI, 165 +/- 14 ng/ml) with no differences between the two insulins (P > 0.2). A similar pattern was observed for plasma IGFBP-3 levels. Insulin infusion resulted in a suppression of plasma IGFBP-1 concentrations with no differences between IDet (baseline, 16.6 +/- 3.8 ng/ml; endpoint, 2.0 +/- 0.6 ng/ml) and HI (baseline, 16.6 +/- 4.1 ng/ml; endpoint, 2.6 +/- 1.4 ng/ml) (P > 0.2) and study conditions (P > 0.2). CONCLUSIONS The greater plasma insulin concentrations obtained with IDet exert effects on plasma levels of IGF-I, IGFBP-1, and IGFBP-3 similar to those of HI. Additional studies are needed to confirm these short-term results in patients with diabetes mellitus on long-term treatment with IDet.


Diabetes Care | 2018

Pharmacokinetics, Pharmacodynamics, and Modulation of Hepatic Glucose Production With Insulin Glargine U-300 and Glargine U-100 at Steady State With Individualized Clinical Doses in Type 1 Diabetes

Francesca Porcellati; Paola Lucidi; Paola Candeloro; Patrizia Cioli; Anna Marinelli Andreoli; Gianluca Curti; Geremia B. Bolli; Carmine G. Fanelli

OBJECTIVE This study characterized the pharmacokinetics (PK), pharmacodynamics (PD), and endogenous (hepatic) glucose production (EGP) of clinical doses of glargine U300 (Gla-300) and glargine U100 (Gla-100) under steady-state (SS) conditions in type 1 diabetes mellitus (T1DM). RESEARCH DESIGN AND METHODS T1DM subjects (N = 18, age 40 ± 12 years, T1DM duration 26 ± 12 years, BMI 23.4 ± 2 kg/m2, A1C 7.19 ± 0.52% [55 ± 5.7 mmol · mol−1−1]) were studied after 3 months of Gla-300 or Gla-100 (evening dosing) titrated to fasting euglycemia (random, crossover) with the euglycemic clamp using individualized doses (Gla-300 0.35 ± 0.08, Gla-100 0.28 ± 0.07 units · kg−1). RESULTS Plasma free insulin concentrations (free immunoreactive insulin area under the curve) were equivalent over 24 h with Gla-300 versus Gla-100 (point estimate 1.11 [90% CI 1.03; 1.20]) but were reduced in the first 6 h (0.91 [90% CI 0.86; 0.97]) and higher in the last 12 h postdosing (1.38 [90% CI 1.21; 1.56]). Gla-300 and Gla-100 both maintained 24 h euglycemia (0.99 [90% CI 0.98; 1.0]). The glucose infusion rate was equivalent over 24 h (1.03 [90% CI 0.88; 1.21]) but was lower in first (0.77 [90% CI 0.62; 0.95]) and higher (1.53 [90% CI 1.23; 1.92]) in the second 12 h with Gla-300 versus Gla-100. EGP was less suppressed during 0–6 h but more during 18–24 h with Gla-300. PK and PD within-day variability (fluctuation) was 50% and 17% lower with Gla-300. CONCLUSIONS Individualized, clinical doses of Gla-300 and Gla-100 resulted in a similar euglycemic potential under SS conditions. However, Gla-300 exhibited a more stable profile, with lower variability and more physiological modulation of EGP compared with Gla-100.

Collaboration


Dive into the Patrizia Cioli's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carmine G. Fanelli

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Paolo Rossetti

Polytechnic University of Valencia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge