Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paul A. Dirmeyer is active.

Publication


Featured researches published by Paul A. Dirmeyer.


Bulletin of the American Meteorological Society | 2003

The common land model

Yongjiu Dai; Xubin Zeng; Robert E. Dickinson; Ian T. Baker; Gordon B. Bonan; Michael G. Bosilovich; A. Scott Denning; Paul A. Dirmeyer; Paul R. Houser; Guo Yue Niu; Keith W. Oleson; C. Adam Schlosser; Zong-Liang Yang

The Common Land Model (CLM) was developed for community use by a grassroots collaboration of scientists who have an interest in making a general land model available for public use and further development. The major model characteristics include enough unevenly spaced layers to adequately represent soil temperature and soil moisture, and a multilayer parameterization of snow processes; an explicit treatment of the mass of liquid water and ice water and their phase change within the snow and soil system; a runoff parameterization following the TOPMODEL concept; a canopy photo synthesis-conductance model that describes the simultaneous transfer of CO2 and water vapor into and out of vegetation; and a tiled treatment of the subgrid fraction of energy and water balance. CLM has been extensively evaluated in offline mode and coupling runs with the NCAR Community Climate Model (CCM3). The results of two offline runs, presented as examples, are compared with observations and with the simulation of three other la...


Journal of Hydrometeorology | 2006

GLACE: The Global Land–Atmosphere Coupling Experiment. Part I: Overview

Randal D. Koster; Y. C. Sud; Zhichang Guo; Paul A. Dirmeyer; Gordon B. Bonan; Keith W. Oleson; Edmond Chan; Diana Verseghy; Peter M. Cox; Harvey Davies; Eva Kowalczyk; C. T. Gordon; Shinjiro Kanae; David M. Lawrence; Ping Liu; David Mocko; Cheng-Hsuan Lu; K. L. Mitchell; Sergey Malyshev; B. J. McAvaney; Taikan Oki; Tomohito J. Yamada; A. J. Pitman; Christopher M. Taylor; Ratko Vasic; Yongkang Xue

Abstract The Global Land–Atmosphere Coupling Experiment (GLACE) is a model intercomparison study focusing on a typically neglected yet critical element of numerical weather and climate modeling: land–atmosphere coupling strength, or the degree to which anomalies in land surface state (e.g., soil moisture) can affect rainfall generation and other atmospheric processes. The 12 AGCM groups participating in GLACE performed a series of simple numerical experiments that allow the objective quantification of this element for boreal summer. The derived coupling strengths vary widely. Some similarity, however, is found in the spatial patterns generated by the models, with enough similarity to pinpoint multimodel “hot spots” of land–atmosphere coupling. For boreal summer, such hot spots for precipitation and temperature are found over large regions of Africa, central North America, and India; a hot spot for temperature is also found over eastern China. The design of the GLACE simulations are described in full detai...


Bulletin of the American Meteorological Society | 2006

GSWP-2 Multimodel Analysis and Implications for Our Perception of the Land Surface

Paul A. Dirmeyer; Xiang Gao; Mei Zhao; Zhichang Guo; Taikan Oki; Naota Hanasaki

Abstract The Second Global Soil Wetness Project (GSWP-2) is an initiative to compare and evaluate 10-year simulations by a broad range of land surface models under controlled conditions. A major product of GSWP-2 is the first global gridded multimodel analysis of land surface state variables and fluxes for use by meteorologists, hydrologists, engineers, biogeochemists, agronomists, botanists, ecologists, geographers, climatologists, and educators. Simulations by 13 land models from five nations have gone into production of the analysis. The models are driven by forcing data derived from a combination of gridded atmospheric reanalyses and observations. The resulting analysis consists of multimodel means and standard deviations on the monthly time scale, including profiles of soil moisture and temperature at six levels, as well as daily and climatological (mean annual cycle) fields for over 50 land surface variables. The monthly standard deviations provide a measure of model agreement that may be used as a ...


Environmental Modelling and Software | 2006

Land information system: An interoperable framework for high resolution land surface modeling

Sujay V. Kumar; Christa D. Peters-Lidard; Yudong Tian; Paul R. Houser; James V. Geiger; S. Olden; L. Lighty; Joseph L. Eastman; B. Doty; Paul A. Dirmeyer

Abstract Knowledge of land surface water, energy, and carbon conditions are of critical importance due to their impact on many real world applications such as agricultural production, water resource management, and flood, weather, and climate prediction. Land Information System (LIS) is a software framework that integrates the use of satellite and ground-based observational data along with advanced land surface models and computing tools to accurately characterize land surface states and fluxes. LIS employs the use of scalable, high performance computing and data management technologies to deal with the computational challenges of high resolution land surface modeling. To make the LIS products transparently available to the end users, LIS includes a number of highly interactive visualization components as well. The LIS components are designed using object-oriented principles, with flexible, adaptable interfaces and modular structures for rapid prototyping and development. In addition, the interoperable features in LIS enable the definition, intercomparison, and validation of land surface modeling standards and the reuse of a high quality land surface modeling and computing system.


Bulletin of the American Meteorological Society | 1999

The pilot phase of the Global Soil Wetness Project

Paul A. Dirmeyer; A. J. Dolman; Nobuo Sato

Abstract The Global Soil Wetness Project (GSWP) is an ongoing land surface modeling activity of the International Satellite Land-Surface Climatology Project (ISLSCP), a part of the Global Energy and Water Cycle Experiment. The pilot phase of GSWP deals with the production of a two-year global dataset of soil moisture, temperature, runoff, and surface fluxes by integrating uncoupled land surface schemes (LSSs) using externally specified surface forcings from observations and standardized soil and vegetation distributions. Approximately one dozen participating LSS groups in five nations have taken the common ISLSCP forcing data to drive their state-of-the-art models over the 1987–88 period to generate global datasets. Many of the LSS groups have performed specific sensitivity studies, which are intended to evaluate the impact of uncertainties in model parameters and forcing fields on simulation of the surface water and energy balances. A validation effort exists to compare the global products to other forms...


Bulletin of the American Meteorological Society | 2001

Modeling root water uptake in hydrological and climate models

Reinder A. Feddes; Holger Hoff; Michael Bruen; Todd E. Dawson; Patricia de Rosnay; Paul A. Dirmeyer; Robert B. Jackson; P. Kabat; Axel Kleidon; Allan Lilly; A. J. Pitman

Abstract From 30 September to 2 October 1999 a workshop was held in Gif–sur–Yvette, France, with the central objective to develop a research strategy for the next 3–5 years, aiming at a systematic description of root functioning, rooting depth, and root distribution for modeling root water uptake from local and regional to global scales. The goal was to link more closely the weather prediction and climate and hydrological models with ecological and plant physiological information in order to improve the understanding of the impact that root functioning has on the hydrological cycle at various scales. The major outcome of the workshop was a number of recommendations, detailed at the end of this paper, on root water uptake parameterization and modeling and on collection of root and soil hydraulic data.


Journal of Climate | 2009

On the Nature of Soil Moisture in Land Surface Models

Randal D. Koster; Zhichang Guo; Rongqian Yang; Paul A. Dirmeyer; Kenneth E. Mitchell; Michael J. Puma

Abstract The soil moisture state simulated by a land surface model is a highly model-dependent quantity, meaning that the direct transfer of one model’s soil moisture into another can lead to a fundamental, and potentially detrimental, inconsistency. This is first illustrated with two recent examples, one from the National Centers for Environmental Prediction (NCEP) involving seasonal precipitation forecasting and another from the realm of ecological modeling. The issue is then further addressed through a quantitative analysis of soil moisture contents produced as part of a global offline simulation experiment in which a number of land surface models were driven with the same atmospheric forcing fields. These latter comparisons clearly demonstrate, on a global scale, the degree to which model-simulated soil moisture variables differ from each other and that these differences extend beyond those associated with model-specific layer thicknesses or soil texture. The offline comparisons also show, however, th...


Springer-Verlag GmbH | 2004

Vegetation, water, humans and the climate: A new perspective on an interactive system.

P. Kabat; Martin Claussen; Paul A. Dirmeyer; J.H.C. Gash; Lelys Guenni; Michel Meybeck; Roger A. Pielke; Charles J. Vörösmarty; Sabine Lütkemeier

Land Surface Matter in Climate and Weather: The Climate near the Ground The Regional Climate The Global Climate The Sahelian Climate The Amazonian Climate The Boreal Climate The Asian Monsoon Climate.- How Measurable is the Earth System: The Energy Balance Closure Problem Radiation Measurements in Integrated Terrestrial Experiments Surface Turbulent Fluxes Accuracy and Utility of Aircraft Flux Measurements Boundary Layer Budgeting Vegetation Structure, Dynamics and Physiology Remote Sensing and Land Surface Experiments The Water Balance Concept Use of Field Experiments in Improving the Land Surface Description in Atmospheric Models Further Insight from Large-scale Observational Studies of Land/Atmosphere Interactions.- The Value of Land Surface Data Consolidation: Motivation for Data Consolidation Existing Degrees of Consolidation Achieving Full Consolidation Terrestrial Data Assimilation.- The Integrity of River and Drainage Basin Systems: Responses of Hydrological Processes to Environmental Change at Small Catchment Scales River Basin Responses to Global Change and Anthropogenic Impacts Responses of Continental Aquatic Systems at the Global Scale Case Study 1 - The Amazon Basin Case Study 2: The Elbe River Basin in Central Europe Case Study 3: The Mixed Underdeveloped/Developed Mgeni Catchment, South Africa Scaling Relative Responses of Terrestrial Aquatic Systems to Global Changes.- How to Evaluate Vulnerability in Changing Environmental Conditions: Predictability and Uncertainty Contrast between Predictive and Vulnerability Approaches The Scenario Approach The Vulnerability Approach Case Studies Conclusions.


Journal of Hydrometeorology | 2011

The Second Phase of the Global Land–Atmosphere Coupling Experiment: Soil Moisture Contributions to Subseasonal Forecast Skill

Randal D. Koster; S. P. P. Mahanama; Tomohito J. Yamada; Gianpaolo Balsamo; Aaron A. Berg; M. Boisserie; Paul A. Dirmeyer; Francisco J. Doblas-Reyes; G. B. Drewitt; C. T. Gordon; Z. Guo; Jee-Hoon Jeong; W.-S. Lee; Z. Li; Lifeng Luo; Sergey Malyshev; William J. Merryfield; Sonia I. Seneviratne; Tanja Stanelle; B. J. J. M. van den Hurk; F. Vitart; Eric F. Wood

AbstractThe second phase of the Global Land–Atmosphere Coupling Experiment (GLACE-2) is a multi-institutional numerical modeling experiment focused on quantifying, for boreal summer, the subseasonal (out to two months) forecast skill for precipitation and air temperature that can be derived from the realistic initialization of land surface states, notably soil moisture. An overview of the experiment and model behavior at the global scale is described here, along with a determination and characterization of multimodel “consensus” skill. The models show modest but significant skill in predicting air temperatures, especially where the rain gauge network is dense. Given that precipitation is the chief driver of soil moisture, and thereby assuming that rain gauge density is a reasonable proxy for the adequacy of the observational network contributing to soil moisture initialization, this result indeed highlights the potential contribution of enhanced observations to prediction. Land-derived precipitation forec...


Journal of Climate | 2000

Using a Global Soil Wetness Dataset to Improve Seasonal Climate Simulation

Paul A. Dirmeyer

Abstract Ensembles of boreal summer coupled land–atmosphere climate model integrations for 1987 and 1988 are conducted with and without interactive soil moisture to evaluate the degree of climate drift in the coupled land–atmosphere model system, and to gauge the quality of the specified soil moisture dataset from the Global Soil Wetness Project (GSWP). Use of specified GSWP soil moisture leads to improved simulations of rainfall patterns, and significantly reduces root-mean-square errors in near-surface air temperature, indicating that the GSWP product is of useful quality and can also be used to supply initial conditions to fully coupled climate integrations. Integrations using specified soil moisture from the opposite year suggest that the interannual variability in the GSWP dataset is significant and contributes to the quality of the simulation of precipitation above what would be possible with only a mean annual cycle climatology of soil moisture. In particular, specification of soil wetness from the...

Collaboration


Dive into the Paul A. Dirmeyer's collaboration.

Top Co-Authors

Avatar

Zhichang Guo

George Mason University

View shared research outputs
Top Co-Authors

Avatar

David M. Lawrence

National Center for Atmospheric Research

View shared research outputs
Top Co-Authors

Avatar

Randal D. Koster

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar

Jiangfeng Wei

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sanjiv Kumar

National Oceanic and Atmospheric Administration

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ahmed B. Tawfik

National Center for Atmospheric Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge