Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jiangfeng Wei is active.

Publication


Featured researches published by Jiangfeng Wei.


Journal of Hydrometeorology | 2013

Where Does the Irrigation Water Go? An Estimate of the Contribution of Irrigation to Precipitation Using MERRA

Jiangfeng Wei; Paul A. Dirmeyer; Dominik Wisser; Michael G. Bosilovich; David Mocko

Irrigation is an important human activity that may impact local and regional climate, but current climate model simulations and data assimilation systems generally do not explicitly include it. The European Centre for Medium-Range Weather Forecasts (ECMWF) Interim Re-Analysis (ERA-Interim) shows more irrigation signal in surface evapotranspiration (ET) than the Modern-Era Retrospective Analysis for Research and Applications (MERRA) because ERA-Interim adjusts soil moisture according to the observed surface temperature and humidity while MERRA has no explicit consideration of irrigation at the surface. But, when compared with the results from a hydrological model with detailed considerations of agriculture, the ET from both reanalyses show large deficiencies in capturing the impact of irrigation. Here, a back-trajectory method is used to estimate the contribution of irrigation to precipitation over local and surrounding regions, using MERRA with observation-based corrections and added irrigation-caused ET increase from the hydrological model. Results show substantial contributions of irrigation to precipitation over heavily irrigated regions in Asia, but the precipitation increase is much less than the ET increase over most areas, indicating that irrigation could lead to water deficits over these regions. For the same increase in ET, precipitation increases are larger over wetter areas where convection is more easily triggered, but the percentage increase in precipitation is similar for different areas. There are substantial regional differences in the patterns of irrigation impact, but, for all the studied regions, the highest percentage contribution to precipitation is over local land.


Journal of Hydrometeorology | 2008

A Negative Soil Moisture–Precipitation Relationship and Its Causes

Jiangfeng Wei; Robert E. Dickinson; Haishan Chen

Abstract This study examines a lagged soil moisture–precipitation (S–P) correlation for 24 yr of boreal summer (1979–2002) from the 40-yr ECMWF Re-Analysis (ERA-40), the NCEP–Department of Energy (DOE) reanalysis 2 (R-2), the North American Regional Reanalysis (NARR), 10 yr (1986–95) of data from phase 2 of the Global Soil Wetness Project (GSWP-2), and two 24-yr model simulations with the NCAR Community Atmosphere Model version 3.1 (CAM3). The different datasets and model simulations all show a similar negative-dominant S–P correlation pattern with wet areas having more significantly negative correlations than the dry areas. The experiments with CAM3 show that this correlation pattern is not caused by the soil moisture feedback. Rather, the combined effect of the precipitation variability and the memory of soil moisture is the main reason for this correlation pattern. Theoretical analysis confirms this conclusion and shows that the correlation pattern is related to both the precipitation spectrum and the ...


Journal of Geophysical Research | 2012

Water vapor sources for Yangtze River Valley rainfall: Climatology, variability, and implications for rainfall forecasting

Jiangfeng Wei; Paul A. Dirmeyer; Michael G. Bosilovich; Renguang Wu

[1] The method of calculating water vapor flux can show the paths of moisture transport but cannot easily identify the sources and sinks of water vapor. In this study, we estimate the evaporative moisture sources for the Yangtze River Valley (YRV) rainfall with a water vapor back-trajectory method, using meteorological data from the Modern Era Retrospective-analysis for Research and Applications (MERRA). The major moisture sources and their relative contributions show large seasonal variations. The moisture from the Bay of Bengal and the western Pacific usually compensate each other both during the evolution of YRV wet season (April–September) and interannually for the wet months (peak in August). The major direct moisture sources are over YRV and its major moisture transport pathways over land, rather than over the ocean, but the ocean is important in initiating the moisture transfer. However, over these important land moisture sources, surface evapotranspiration is not controlled by soil wetness and has weak impact on the variability of rainfall. Local moisture recycling over YRV is mostly a passive response to rainfall and circulation changes. The prediction of YRV rainy season rainfall thus depends more on the knowledge of large-scale circulations and monsoons than land surface conditions.


Journal of Climate | 2010

How Much Do Different Land Models Matter for Climate Simulation? Part I: Climatology and Variability

Jiangfeng Wei; Paul A. Dirmeyer; Zhichang Guo; Li Zhang; Vasubandhu Misra

Abstract An atmospheric general circulation model (AGCM) is coupled to three different land surface schemes (LSSs), both individually and in combination (i.e., the LSSs receive the same AGCM forcing each time step and the averaged upward surface fluxes are passed back to the AGCM), to study the uncertainty of simulated climatologies and variabilities caused by different LSSs. This tiling of the LSSs is done to study the uncertainty of simulated mean climate and climate variability caused by variations between LSSs. The three LSSs produce significantly different surface fluxes over most of the land, no matter whether they are coupled individually or in combination. Although the three LSSs receive the same atmospheric forcing in the combined experiment, the inter-LSS spread of latent heat flux can be larger or smaller than the individually coupled experiment, depending mostly on the evaporation regime of the schemes in different regions. Differences in precipitation are the main reason for the different lat...


Geophysical Research Letters | 2014

Positive response of Indian summer rainfall to Middle East dust

Qinjian Jin; Jiangfeng Wei; Zong-Liang Yang

Using observational and reanalyses data, we investigated the impact of dust aerosols over the Middle East and the Arabian Sea (AS) on the Indian summer monsoon (ISM) rainfall. Satellite and aerosol reanalysis data show extremely heavy aerosol loading, mainly mineral dust, over the Middle East and AS during the ISM season. Multivariate empirical orthogonal function analyses suggest an aerosol-monsoon connection. This connection may be attributed to dust-induced atmospheric heating centered over the Iranian Plateau (IP), which enhances the meridional thermal contrast and strengthens the ISM circulation and rainfall. The enhanced circulation further transports more dust to the AS and IP, heating the atmosphere (positive feedback). The aerosols over the AS and the Arabian Peninsula have a significant correlation with rainfall over central and eastern India about 2 weeks later. This finding highlights the nonlocal radiative effect of dust on the ISM circulation and rainfall and may improve ISM rainfall forecasts.


Journal of Hydrometeorology | 2014

Comparing Evaporative Sources of Terrestrial Precipitation and Their Extremes in MERRA Using Relative Entropy

Paul A. Dirmeyer; Jiangfeng Wei; Michael G. Bosilovich; David Mocko

AbstractA quasi-isentropic, back-trajectory scheme is applied to output from the Modern-Era Retrospective Analysis for Research and Applications (MERRA) and a land-only replay with corrected precipitation to estimate surface evaporative sources of moisture supplying precipitation over every ice-free land location for the period 1979–2005. The evaporative source patterns for any location and time period are effectively two-dimensional probability distributions. As such, the evaporative sources for extreme situations like droughts or wet intervals can be compared to the corresponding climatological distributions using the method of relative entropy. Significant differences are found to be common and widespread for droughts, but not wet periods, when monthly data are examined. At pentad temporal resolution, which is more able to isolate floods and situations of atmospheric rivers, values of relative entropy over North America are typically 50%–400% larger than at monthly time scales. Significant differences ...


Journal of Climate | 2010

How much do different land models matter for climate simulation? Part II: A decomposed view of the land-atmosphere coupling strength.

Jiangfeng Wei; Paul A. Dirmeyer; Zhichang Guo

Abstract The Global Land–Atmosphere Coupling Experiment (GLACE) built a framework to estimate the strength of the land–atmosphere interaction across many weather and climate models. Within this framework, GLACE-type experiments are performed with a single atmospheric model coupled to three different land models. The precipitation time series is decomposed into three frequency bands to investigate the large-scale connection between external forcing, precipitation variability and predictability, and land–atmosphere coupling strength. It is found that coupling to different land models or prescribing subsurface soil moisture does not change the global pattern of precipitation predictability and variability too much. However, the regional impact of soil moisture can be highlighted by calculating the land–atmosphere coupling strength, which shows very different patterns for the three models. The estimated precipitation predictability and land–atmosphere coupling strength is mainly associated with the low-freque...


Journal of Hydrometeorology | 2011

Land–Atmosphere Coupling Strength in the Global Forecast System

Li Zhang; Paul A. Dirmeyer; Jiangfeng Wei; Zhichang Guo; Cheng-Hsuan Lu

Abstract The operational coupled land–atmosphere forecast model from the National Centers for Environmental Prediction (NCEP) is evaluated for the strength and characteristics of its coupling in the water cycle between land and atmosphere. Following the protocols of the Global Land–Atmosphere Coupling Experiment (GLACE) it is found that the Global Forecast System (GFS) atmospheric model coupled to the Noah land surface model exhibits extraordinarily weak land–atmosphere coupling, much as its predecessor, the GFS–Oregon State University (OSU) coupled system. The coupling strength is evaluated by the ability of subsurface soil wetness to affect locally the time series of precipitation. The surface fluxes in Noah are also found to be rather insensitive to subsurface soil wetness. Comparison to another atmospheric model coupled to Noah as well as a different land surface model show that Noah is responsible for some of the lack of sensitivity, primarily because its thick (10 cm) surface layer dominates the var...


Journal of Climate | 2016

Seasonal Responses of Indian Summer Monsoon to Dust Aerosols in the Middle East, India, and China

Qinjian Jin; Zong-Liang Yang; Jiangfeng Wei

AbstractThe seasonal responses of the Indian summer monsoon (ISM) to dust aerosols in local (the Thar Desert) and remote (the Middle East and western China) regions are studied using the WRF Model coupled with online chemistry (WRF-Chem). Ensemble experiments are designed by perturbing model physical and chemical schemes to examine the uncertainties of model parameterizations. Model results show that the dust-induced increase in ISM total rainfall can be attributed to the remote dust in the Middle East, while the contributions from local and remote dust are very limited. Convective rainfall shows a spatially more homogeneous increase than stratiform rainfall, whose responses follow the topography. The magnitude of dust-induced increase in rainfall is comparable to that caused by anthropogenic aerosols. The Middle East dust aerosols tend to enhance the southwesterly monsoon flow, which can transport more water vapor to southern and northern India, while the anthropogenic aerosols tend to enhance the southe...


Scientific Reports | 2016

High sensitivity of Indian summer monsoon to Middle East dust absorptive properties.

Qinjian Jin; Zong-Liang Yang; Jiangfeng Wei

The absorptive properties of dust aerosols largely determine the magnitude of their radiative impacts on the climate system. Currently, climate models use globally constant values of dust imaginary refractive index (IRI), a parameter describing the dust absorption efficiency of solar radiation, although it is highly variable. Here we show with model experiments that the dust-induced Indian summer monsoon (ISM) rainfall differences (with dust minus without dust) change from −9% to 23% of long-term climatology as the dust IRI is changed from zero to the highest values used in the current literature. A comparison of the model results with surface observations, satellite retrievals, and reanalysis data sets indicates that the dust IRI values used in most current climate models are too low, tending to significantly underestimate dust radiative impacts on the ISM system. This study highlights the necessity for developing a parameterization of dust IRI for climate studies.

Collaboration


Dive into the Jiangfeng Wei's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zong-Liang Yang

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Qinjian Jin

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Zhichang Guo

George Mason University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peirong Lin

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Robert E. Dickinson

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Haishan Chen

Nanjing University of Information Science and Technology

View shared research outputs
Top Co-Authors

Avatar

David Mocko

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar

Hua Su

University of Texas at Austin

View shared research outputs
Researchain Logo
Decentralizing Knowledge