Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paul A. Haynes is active.

Publication


Featured researches published by Paul A. Haynes.


Proteomics | 2002

Proteomic characterization of wheat amyloplasts using identification of proteins by tandem mass spectrometry

Nancy L. Andon; Sarah Hollingworth; Antonius Koller; Andrew James Greenland; John R. Yates; Paul A. Haynes

We describe the initial characterization of the wheat amyloplast proteome, consisting of the identification and classification of 171 proteins. Whole amyloplasts and purified amyloplast membranes were prepared from wheat (Triticum aestivum). Protein extracts were examined by one‐dimensional and two‐dimensional electrophoresis, followed by high performance liquid chromatography‐tandem mass spectrometry of separated proteins. Tandem mass spectrometry data of individual peptides was then searched by SEQUEST, using a database containing known protein sequences from both wheat and other homologous cereal crops. Using this approach we identified 108 proteins from whole amyloplasts and 63 proteins from purified amyloplast membranes. The majority of protein identifications were derived from protein sequences from cereal crops other than wheat, for which relatively little gene sequence data is available. The highest percentage of protein identifications obtained from any individual species was 46% of the total number of proteins identified, using sequence data found in our proprietary rice (Oryza sativa) genome database.


Yeast | 2000

Proteome Profiling—Pitfalls and Progress

Paul A. Haynes; John R. Yates

In this review we examine the current state of analytical methods in proteomics. The conventional methodology using two‐dimensional electrophoresis gels and mass spectrometry is discussed, with particular reference to the advantages and shortcomings thereof. Two recently published methods which offer an alternative approach are presented and discussed, with emphasis on how they can provide information not available via two‐dimensional gel electrophoresis. These two methods are the isotope‐coded affinity tags approach of Gygi et al. and the two‐dimensional liquid chromatography–tandem mass spectrometry approach as presented by Link et al. We conclude that both of these new techniques represent significant advances in analytical methodology for proteome analysis. Furthermore, we believe that in the future biological research will continue to be enhanced by the continuation of such developments in proteomic analytical technology. Copyright


Journal of the American Society for Mass Spectrometry | 2003

Investigative Proteomics: Identification of an Unknown Plant Virus from Infected Plants Using Mass Spectrometry

Bret Cooper; Donna Eckert; Nancy L. Andon; John R. Yates; Paul A. Haynes

We describe the identification of a previously uncharacterized plant virus that is capable of infecting Nicotiana spp. and Arabidopsis thaliana. Protein extracts were first prepared from leaf tissue of uninfected tobacco plants, and the proteins were visualized with two-dimensional electrophoresis (2-DE). Matching gels were then run using protein extracts of a tobacco plant infected with tobacco mosaic virus (TMV). After visual comparison, the proteins spots that were differentially expressed in infected plant tissues were cut from the gels and analyzed by high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). Tandem mass spectrometry data of individual peptides was searched with SEQUEST. Using this approach we demonstrated a successful proof-of-concept experiment by identifying TMV proteins present in the total protein extract. The same procedure was then applied to tobacco plants infected with a laboratory viral isolate of unknown identity. Several of the differentially expressed protein spots were identified as proteins of potato virus X (PVX), thus successfully identifying the causative agent of the uncharacterized viral infection. We believe this demonstrates that HPLC-MS/MS can be used to successfully characterize unknown viruses in infected plants.


Insect Biochemistry and Molecular Biology | 2009

Proteomic analysis of Drosophila mojavensis male accessory glands suggests novel classes of seminal fluid proteins

Erin S. Kelleher; Thomas D. Watts; Brooke A. LaFlamme; Paul A. Haynes; Therese A. Markow

Fruit-flies of the genus Drosophila are characterized by overwhelming variation in fertilization traits such as copulatory plug formation, sperm storage organ use, and nutritional ejaculatory donation. Despite extensive research on the genetic model Drosophila melanogaster, little is known about the molecular underpinnings of these interspecific differences. This study employs a proteomic approach to pin-point candidate seminal fluid proteins in Drosophila mojavensis, a cactophilic fruit-fly that exhibits divergent reproductive biology when compared to D. melanogaster. We identify several classes of candidate seminal fluid proteins not previously documented in the D. melanogaster male ejaculate, including metabolic enzymes, nutrient transport proteins, and clotting factors. Conversely, we also define 29 SFPs that are conserved despite >40 million years of Drosophila evolution. We discuss our results in terms of universal processes in insect reproduction, as well as the specialized reproductive biology of D. mojavensis.


Infection and Immunity | 2006

Protein Expression Profiling of Coccidioides posadasii by Two-Dimensional Differential In-Gel Electrophoresis and Evaluation of a Newly Recognized Peroxisomal Matrix Protein as a Recombinant Vaccine Candidate

Kris I. Orsborn; Lisa F. Shubitz; Tao Peng; Ellen M. Kellner; Marc J. Orbach; Paul A. Haynes; John N. Galgiani

ABSTRACT Coccidioides posadasii and Coccidioides immitis are dimorphic, soil-dwelling pathogenic ascomycetes endemic to the southwestern United States. Infection can result from inhalation of a very few arthroconidia, but following natural infection, long-lived immunity is the norm. Previous work in the field has shown that spherule-derived vaccines afford more protection than those from mycelia. We have used two-dimensional differential in-gel electrophoresis coupled with nano-high-performance liquid chromatography-tandem mass spectrometry to directly assess both absolute abundance and differential expression of proteins in the spherule and the mycelial phases of C. posadasii with the intent to identify potential vaccine candidates. Peptides derived from 40 protein spots were analyzed and a probable identity was assigned to each. One spherule-abundant protein, identified as Pmp1, showed homology to allergens from Aspergillus fumigatus and other fungi, all of which exhibit similarity to yeast thiol peroxidases. Recombinant Pmp1 was reactive with serum from individuals with both acute and protracted disease, and evoked protection in two murine models of infection with C. posadasii. These results demonstrate the utility of proteomic analysis as a point of discovery for protective antigens for possible inclusion in a vaccine candidate to prevent coccidioidomycosis.


Journal of Biological Chemistry | 2010

NF45 and NF90 Regulate HS4-dependent Interleukin-13 Transcription in T Cells

Patricia Kiesler; Paul A. Haynes; Lingfang Shi; Peter N. Kao; Vicki H. Wysocki; Donata Vercelli

Expression of the cytokine interleukin-13 (IL13) is critical for Th2 immune responses and Th2-mediated allergic diseases. Activation of human IL13 expression involves chromatin remodeling and formation of multiple DNase I-hypersensitive sites throughout the locus. Among these, HS4 is detected in the distal IL13 promoter in both naive and polarized CD4+ T cells. We show herein that HS4 acts as a position-independent, orientation-dependent positive regulator of IL13 proximal promoter activity in transiently transfected, activated human CD4+ Jurkat T cells and primary murine Th2 cells. The 3′-half of HS4 (HS4-3′) was responsible for IL13 up-regulation and bound nuclear factor (NF) 90 and NF45, as demonstrated by DNA affinity chromatography coupled with tandem mass spectrometry, chromatin immunoprecipitation, and gel shift analysis. Notably, the CTGTT NF45/NF90-binding motif within HS4-3′ was critical for HS4-dependent up-regulation of IL13 expression. Moreover, transfection of HS4-IL13 reporter vectors into primary, in vitro differentiated Th2 cells from wild-type, NF45+/−, or NF90+/− mice showed that HS4 activity was exquisitely dependent on the levels of endogenous NF45 (and to a lesser degree NF90), because HS4-dependent IL13 expression was virtually abrogated in NF45+/− cells and reduced in NF90+/− cells. Collectively, our results identify NF45 and NF90 as novel regulators of HS4-dependent human IL13 transcription in response to T cell activation.


Methods of Molecular Biology | 2007

Two-Dimensional Differential In-Gel Electrophoresis (DIGE) of Leaf and Roots of Lycopersicon esculentum

Matthew Keeler; Jessica Letarte; Emily Hattrup; Fatimah Hickman; Paul A. Haynes

In this report we present a detailed protocol for the analysis of differential protein expression between two plant tissue samples. The protocol involves harvesting of leaves and roots from mature tomato plants, preparing protein extracts from the harvested tissues, fluorescent labeling of each sample prior to differential in-gel electrophoresis (DIGE), first- and second-dimension electrophoretic separations, and image analysis to visualize and quantify differential protein expression. This protocol is adaptable for use with a wide variety of plant materials and can be used to measure protein expression changes occurring in response to abiotic stress, biotic stress, genetic manipulation, selective breeding, and many other conditions. In addition to the detailed protocol, we also present the results of a representative experiment analyzing subtle changes in protein expression in the roots of tomato plants grown under control and salt-stress conditions.


Methods of Molecular Biology | 2006

Two-Dimensional Nanoflow Liquid Chromatography-Tandem Mass Spectrometry of Proteins Extracted from Rice Leaves and Roots

Linda Breci; Paul A. Haynes

In this chapter we present a detailed protocol for the large-scale identification of proteins present in rice leaf and root tissue samples using 2D liquid chromatography-tandem mass spectrometry of protein extracts. This is performed using biphasic (strong cation exchange/reversed phase) columns with integral electrospray emitters operating at nanoliter flow rates, a technique known by the acronym Mudpit (for multidimensional protein identification technique). The protocol involves harvesting of leaves and roots from rice plants, preparing protein extracts from the harvested tissues, preparing proteolytic digests of the extracted proteins, making a biphasic capillary column with an integral electrospray emitter, performing two-dimensional chromatographic separation of peptides with data-dependent tandem mass spectrometry, and the use of database searching of the acquired tandem mass spectra to identify peptides and proteins. This protocol is adaptable for use with a wide variety of plant materials and can be used to identify large numbers of proteins present in a specific tissue, organ, organelle, or other subcellular fraction. In addition to the detailed protocol, we also present the results of a representative experiment showing the identification of more than 1000 distinct proteins from rice leaf and root samples in two Mupdit experiments.


Proteomics | 2009

Proteomic analysis of a filamentous fungal endophyte using EST datasets

Shalome A. Bassett; Judy J. Bond; Fiona Y. S. Kwan; Alan McCulloch; Paul A. Haynes; Richard D. Johnson; Gregory T. Bryan; T. William Jordan

Proteomic analysis of many species of fungi, particularly filamentous fungi, is difficult due to the lack of publicly available genome sequence data and the problems associated with cross‐species comparisons. Furthermore, the detection of fungal proteins in biological systems where there are a greater number of proteins present from other eukaryote species provides additional challenges. We present an EST‐based approach for identifying proteins from a fungal endophyte of temperate grasses and demonstrate that this method is well suited for fungi with minimal sequence data.


Proteomics | 2005

Analysis of secreted proteins from Aspergillus flavus

Martha L. Medina; Paul A. Haynes; Linda Breci; Wilson A. Francisco

Collaboration


Dive into the Paul A. Haynes's collaboration.

Top Co-Authors

Avatar

John R. Yates

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge