Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paul A. Ramsland is active.

Publication


Featured researches published by Paul A. Ramsland.


Journal of Molecular Recognition | 2013

Latest developments in molecular docking: 2010–2011 in review

Elizabeth Yuriev; Paul A. Ramsland

The aim of docking is to accurately predict the structure of a ligand within the constraints of a receptor binding site and to correctly estimate the strength of binding. We discuss, in detail, methodological developments that occurred in the docking field in 2010 and 2011, with a particular focus on the more difficult, and sometimes controversial, aspects of this promising computational discipline. The main developments in docking in this period, covered in this review, are receptor flexibility, solvation, fragment docking, postprocessing, docking into homology models, and docking comparisons. Several new, or at least newly invigorated, advances occurred in areas such as nonlinear scoring functions, using machine‐learning approaches. This review is strongly focused on docking advances in the context of drug design, specifically in virtual screening and fragment‐based drug design. Where appropriate, we refer readers to exemplar case studies. Copyright


PLOS ONE | 2010

Structure activity relationship of dendrimer microbicides with dual action antiviral activity.

David Tyssen; Scott Andrew Henderson; Adam Johnson; Jasminka Sterjovski; Katie L. Moore; Jennifer La; Mark Zanin; Secondo Sonza; Peter Karellas; Michael Giannis; Guy Y. Krippner; Steven L. Wesselingh; Tom McCarthy; Paul R. Gorry; Paul A. Ramsland; Richard A. Cone; Jeremy R. A. Paull; Gareth Lewis; Gilda Tachedjian

Background Topical microbicides, used by women to prevent the transmission of HIV and other sexually transmitted infections are urgently required. Dendrimers are highly branched nanoparticles being developed as microbicides. However, the anti-HIV and HSV structure-activity relationship of dendrimers comprising benzyhydryl amide cores and lysine branches, and a comprehensive analysis of their broad-spectrum anti-HIV activity and mechanism of action have not been published. Methods and Findings Dendrimers with optimized activity against HIV-1 and HSV-2 were identified with respect to the number of lysine branches (generations) and surface groups. Antiviral activity was determined in cell culture assays. Time-of-addition assays were performed to determine dendrimer mechanism of action. In vivo toxicity and HSV-2 inhibitory activity were evaluated in the mouse HSV-2 susceptibility model. Surface groups imparting the most potent inhibitory activity against HIV-1 and HSV-2 were naphthalene disulfonic acid (DNAA) and 3,5-disulfobenzoic acid exhibiting the greatest anionic charge and hydrophobicity of the seven surface groups tested. Their anti-HIV-1 activity did not appreciably increase beyond a second-generation dendrimer while dendrimers larger than two generations were required for potent anti-HSV-2 activity. Second (SPL7115) and fourth generation (SPL7013) DNAA dendrimers demonstrated broad-spectrum anti-HIV activity. However, SPL7013 was more active against HSV and blocking HIV-1 envelope mediated cell-to-cell fusion. SPL7013 and SPL7115 inhibited viral entry with similar potency against CXCR4-(X4) and CCR5-using (R5) HIV-1 strains. SPL7013 was not toxic and provided at least 12 h protection against HSV-2 in the mouse vagina. Conclusions Dendrimers can be engineered with optimized potency against HIV and HSV representing a unique platform for the controlled synthesis of chemically defined multivalent agents as viral entry inhibitors. SPL7013 is formulated as VivaGel® and is currently in clinical development to provide protection against HIV and HSV. SPL7013 could also be combined with other microbicides.


Journal of Immunology | 2011

Structural Basis for FcγRIIa Recognition of Human IgG and Formation of Inflammatory Signaling Complexes

Paul A. Ramsland; William Farrugia; Tessa Margaret Bradford; Caroline Tan Sardjono; Sandra Esparon; Halina M. Trist; Maree S. Powell; Peck Szee Tan; A.C Cendron; Bruce D. Wines; Andrew M. Scott; P.M. Hogarth

The interaction of Abs with their specific FcRs is of primary importance in host immune effector systems involved in infection and inflammation, and are the target for immune evasion by pathogens. FcγRIIa is a unique and the most widespread activating FcR in humans that through avid binding of immune complexes potently triggers inflammation. Polymorphisms of FcγRIIa (high responder/low responder [HR/LR]) are linked to susceptibility to infections, autoimmune diseases, and the efficacy of therapeutic Abs. In this article, we define the three-dimensional structure of the complex between the HR (arginine, R134) allele of FcγRIIa (FcγRIIa-HR) and the Fc region of a humanized IgG1 Ab, hu3S193. The structure suggests how the HR/LR polymorphism may influence FcγRIIa interactions with different IgG subclasses and glycoforms. In addition, mutagenesis defined the basis of the epitopes detected by FcR blocking mAbs specific for FcγRIIa (IV.3), FcγRIIb (X63-21), and a pan FcγRII Ab (8.7). The epitopes detected by these Abs are distinct, but all overlap with residues defined by crystallography to contact IgG. Finally, crystal structures of LR (histidine, H134) allele of FcγRIIa and FcγRIIa-HR reveal two distinct receptor dimers that may represent quaternary states on the cell surface. A model is presented whereby a dimer of FcγRIIa-HR binds Ag–Ab complexes in an arrangement that possibly occurs on the cell membrane as part of a larger signaling assembly.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Structural basis for evasion of IgA immunity by Staphylococcus aureus revealed in the complex of SSL7 with Fc of human IgA1

Paul A. Ramsland; Natasha Willoughby; Halina M. Trist; William Farrugia; Hogarth Pm; John D. Fraser; Bruce D. Wines

Infection by Staphylococcus aureus can result in severe conditions such as septicemia, toxic shock, pneumonia, and endocarditis with antibiotic resistance and persistent nasal carriage in normal individuals being key drivers of the medical impact of this virulent pathogen. In both virulent infection and nasal colonization, S. aureus encounters the host immune system and produces a wide array of factors that frustrate host immunity. One in particular, the prototypical staphylococcal superantigen-like protein SSL7, potently binds IgA and C5, thereby inhibiting immune responses dependent on these major immune mediators. We report here the three-dimensional structure of the complex of SSL7 with Fc of human IgA1 at 3.2 Å resolution. Two SSL7 molecules interact with the Fc (one per heavy chain) primarily at the junction between the Cα2 and Cα3 domains. The binding site on each IgA chain is extensive, with SSL7 shielding most of the lateral surface of the Cα3 domain. However, the SSL7 molecules are positioned such that they should allow binding to secretory IgA. The key IgA residues interacting with SSL7 are also bound by the leukocyte IgA receptor, FcαRI (CD89), thereby explaining how SSL7 potently inhibits IgA-dependent cellular effector functions mediated by FcαRI, such as phagocytosis, degranulation, and respiratory burst. Thus, the ability of S. aureus to subvert IgA-mediated immunity is likely to facilitate survival in mucosal environments such as the nasal passage and may contribute to systemic infections.


Journal of Virology | 2011

HIV-1 escape from the CCR5 antagonist maraviroc associated with an altered and less efficient mechanism of gp120-CCR5 engagement that attenuates macrophage-tropism

Michael Roche; Martin R. Jakobsen; Jasminka Sterjovski; Anne Ellett; Filippo Posta; Benhur Lee; Becky Jubb; Mike Westby; Sharon R. Lewin; Paul A. Ramsland; Melissa Churchill; Paul R. Gorry

ABSTRACT Maraviroc (MVC) inhibits the entry of human immunodeficiency virus type 1 (HIV-1) by binding to and modifying the conformation of the CCR5 extracellular loops (ECLs). Resistance to MVC results from alterations in the HIV-1 gp120 envelope glycoproteins (Env) enabling recognition of the drug-bound conformation of CCR5. To better understand the mechanisms underlying MVC resistance, we characterized the virus-cell interactions of gp120 from in vitro-generated MVC-resistant HIV-1 (MVC-Res Env), comparing them with those of gp120 from the sensitive parental virus (MVC-Sens Env). In the absence of the drug, MVC-Res Env maintains a highly efficient interaction with CCR5, similar to that of MVC-Sens Env, and displays a relatively modest increase in dependence on the CCR5 N terminus. However, in the presence of the drug, MVC-Res Env interacts much less efficiently with CCR5 and becomes critically dependent on the CCR5 N terminus and on positively charged elements of the drug-modified CCR5 ECL1 and ECL2 regions (His88 and His181, respectively). Structural analysis suggests that the Val323 resistance mutation in the gp120 V3 loop alters the secondary structure of the V3 loop and the buried surface area of the V3 loop–CCR5 N terminus interface. This altered mechanism of gp120-CCR5 engagement dramatically attenuates the entry of HIV-1 into monocyte-derived macrophages (MDM), cell-cell fusion activity in MDM, and viral replication capacity in MDM. In addition to confirming that HIV-1 escapes MVC by becoming heavily dependent on the CCR5 N terminus, our results reveal novel interactions with the drug-modified ECLs that are critical for the utilization of CCR5 by MVC-Res Env and provide additional insights into virus-cell interactions that modulate macrophage tropism.


Frontiers in Physiology | 2015

Antimicrobial and immune modulatory effects of lactic acid and short chain fatty acids produced by vaginal microbiota associated with eubiosis and bacterial vaginosis.

Muriel Aldunate; Daniela Srbinovski; Anna C. Hearps; Catherine Frances Mary Latham; Paul A. Ramsland; Raffi Gugasyan; Richard A. Cone; Gilda Tachedjian

Lactic acid and short chain fatty acids (SCFAs) produced by vaginal microbiota have reported antimicrobial and immune modulatory activities indicating their potential as biomarkers of disease and/or disease susceptibility. In asymptomatic women of reproductive-age the vaginal microbiota is comprised of lactic acid-producing bacteria that are primarily responsible for the production of lactic acid present at ~110 mM and acidifying the vaginal milieu to pH ~3.5. In contrast, bacterial vaginosis (BV), a dysbiosis of the vaginal microbiota, is characterized by decreased lactic acid-producing microbiota and increased diverse anaerobic bacteria accompanied by an elevated pH>4.5. BV is also characterized by a dramatic loss of lactic acid and greater concentrations of mixed SCFAs including acetate, propionate, butyrate, and succinate. Notably women with lactic acid-producing microbiota have more favorable reproductive and sexual health outcomes compared to women with BV. Regarding the latter, BV is associated with increased susceptibility to sexually transmitted infections (STIs) including HIV. In vitro studies demonstrate that lactic acid produced by vaginal microbiota has microbicidal and virucidal activities that may protect against STIs and endogenous opportunistic bacteria as well as immune modulatory properties that require further characterization with regard to their effects on the vaginal mucosa. In contrast, BV-associated SCFAs have far less antimicrobial activity with the potential to contribute to a pro-inflammatory vaginal environment. Here we review the composition of lactic acid and SCFAs in respective states of eubiosis (non-BV) or dysbiosis (BV), their effects on susceptibility to bacterial/viral STIs and whether they have inherent microbicidal/virucidal and immune modulatory properties. We also explore their potential as biomarkers for the presence and/or increased susceptibility to STIs.


Antiviral Research | 2011

Virucidal Activity of the Dendrimer Microbicide SPL7013 Against HIV-1

Sushama Telwatte; Katie L. Moore; Adam Johnson; David Tyssen; Jasminka Sterjovski; Muriel Aldunate; Paul R. Gorry; Paul A. Ramsland; Gareth Lewis; Jeremy R. A. Paull; Secondo Sonza; Gilda Tachedjian

Topical microbicides for use by women to prevent the transmission of human immunodeficiency virus (HIV) and other sexually transmitted infections are urgently required. Dendrimers are highly branched nanoparticles being developed as microbicides. SPL7013 is a dendrimer with broad-spectrum activity against HIV type I (HIV-1) and -2 (HIV-2), herpes simplex viruses type-1 (HSV-1) and -2 (HSV-2) and human papillomavirus. SPL7013 [3% (w/w)] has been formulated in a mucoadhesive carbopol gel (VivaGel®) for use as a topical microbicide. Previous studies showed that SPL7013 has similar potency against CXCR4-(X4) and CCR5-using (R5) strains of HIV-1 and that it blocks viral entry. However, the ability of SPL7013 to directly inactivate HIV-1 is unknown. We examined whether SPL7013 demonstrates virucidal activity against X4 (NL4.3, MBC200, CMU02 clade EA and 92UG046 clade D), R5 (Ba-L, NB25 and 92RW016 clade A) and dual-tropic (R5X4; MACS1-spln) HIV-1 using a modified HLA-DR viral capture method and by polyethylene glycol precipitation. Evaluation of virion integrity was determined by ultracentrifugation through a sucrose cushion and detection of viral proteins by Western blot analysis. SPL7013 demonstrated potent virucidal activity against X4 and R5X4 strains, although virucidal activity was less potent for the 92UG046 X4 clade D isolate. Where potent virucidal activity was observed, the 50% virucidal concentrations were similar to the 50% effective concentrations previously reported in drug susceptibility assays, indicating that the main mode of action of SPL7013 is by direct viral inactivation for these strains. In contrast, SPL7013 lacked potent virucidal activity against R5 HIV-1 strains. Evaluation of the virucidal mechanism showed that SPL7013-treated NL4.3, 92UG046 and MACS1-spln virions were intact with no significant decrease in gp120 surface protein with respect to p24 capsid content compared to the corresponding untreated virus. These studies demonstrate that SPL7013 is virucidal against HIV-1 strains that utilize the CXCR4 coreceptor but not viruses tested in this study that solely use CCR5 by a mechanism that is distinct from virion disruption or loss of gp120. In addition, the mode of action by which SPL7013 prevents infection of cells with X4 and R5X4 strains is likely to differ from R5 strains of HIV-1.


Journal of Chemical Information and Modeling | 2009

Molecular Docking of Carbohydrate Ligands to Antibodies: Structural Validation against Crystal Structures

Mark Agostino; Cassandra Jene; Tristan Boyle; Paul A. Ramsland; Elizabeth Yuriev

Cell surface glycoproteins play vital roles in cellular homeostasis and disease. Antibody recognition of glycosylation on different cells and pathogens is critically important for immune surveillance. Conversely, adverse immune reactions resulting from antibody-carbohydrate interactions have been implicated in the development of autoimmune diseases and impact areas such as xenotransplantation and cancer treatment. Understanding the nature of antibody-carbohydrate interactions and the method by which saccharides fit into antibody binding sites is important in understanding the recognition process. In silico techniques offer attractive alternatives to experimental methods (X-ray crystallography and NMR) for the study of antibody-carbohydrate complexes. In particular, molecular docking provides information about protein-ligand interactions in systems that are difficult to study with experimental techniques. Before molecular docking can be used to investigate antibody-carbohydrate complexes, validation of an appropriate docking method is required. In this study, four popular docking programs, Glide, AutoDock, GOLD, and FlexX, were assessed for their ability to accurately dock carbohydrates to antibodies. Comparison of top ranking poses with crystal structures highlighted the strengths and weaknesses of these programs. Rigid docking, in which the protein conformation remains static, and flexible docking, where both the protein and ligand are treated as flexible, were compared. This study has revealed that generally molecular docking of carbohydrates to antibodies has been performed best by Glide.


Virology | 2010

An altered and more efficient mechanism of CCR5 engagement contributes to macrophage tropism of CCR5-using HIV-1 envelopes

Jasminka Sterjovski; Michael Roche; Melissa Churchill; Anne Ellett; William Farrugia; Lachlan Robert Gray; Daniel Cowley; Pantelis Poumbourios; Benhur Lee; Steven L. Wesselingh; Anthony L. Cunningham; Paul A. Ramsland; Paul R. Gorry

While CCR5 is the principal coreceptor used by macrophage (M)-tropic HIV-1, not all primary CCR5-using (R5) viruses enter macrophages efficiently. Here, we used functionally-diverse R5 envelope (Env) clones to characterize virus-cell interactions important for efficient CCR5-mediated macrophage entry. The magnitude of macrophage entry by Env-pseudotyped reporter viruses correlated with increased immunoreactivity of CD4-induced gp120 epitopes, increased ability to scavenge low levels of cell-surface CCR5, reduced sensitivity to the CCR5 inhibitor maraviroc, and increased dependence on specific residues in the CCR5 ECL2 region. These results are consistent with an altered and more efficient mechanism of CCR5 engagement. Structural studies revealed potential alterations within the gp120 V3 loop, the gp41 interaction sites at the gp120 C- and N-termini, and within the gp120 CD4 binding site which may directly or indirectly lead to more efficient CCR5-usage. Thus, enhanced gp120-CCR5 interactions may contribute to M-tropism of R5 HIV-1 strains through different structural mechanisms.


Retrovirology | 2013

A common mechanism of clinical HIV-1 resistance to the CCR5 antagonist maraviroc despite divergent resistance levels and lack of common gp120 resistance mutations

Michael Roche; Hamid Salimi; Renee C. Duncan; Brendan L. Wilkinson; Kelechi Chikere; Miranda S Moore; Nicholas E. Webb; Helena Zappi; Jasminka Sterjovski; Jacqueline Kaye Flynn; Anne Ellett; Lachlan Robert Gray; Benhur Lee; Becky Jubb; Mike Westby; Paul A. Ramsland; Sharon R. Lewin; Richard J. Payne; Melissa Churchill; Paul R. Gorry

BackgroundThe CCR5 antagonist maraviroc (MVC) inhibits human immunodeficiency virus type 1 (HIV-1) entry by altering the CCR5 extracellular loops (ECL), such that the gp120 envelope glycoproteins (Env) no longer recognize CCR5. The mechanisms of HIV-1 resistance to MVC, the only CCR5 antagonist licensed for clinical use are poorly understood, with insights into MVC resistance almost exclusively limited to knowledge obtained from in vitro studies or from studies of resistance to other CCR5 antagonists. To more precisely understand mechanisms of resistance to MVC in vivo, we characterized Envs isolated from 2 subjects who experienced virologic failure on MVC.ResultsEnvs were cloned from subjects 17 and 24 before commencement of MVC (17-Sens and 24-Sens) and after virologic failure (17-Res and 24-Res). The Envs cloned during virologic failure showed broad divergence in resistance levels, with 17-Res Env exhibiting a relatively high maximal percent inhibition (MPI) of ~90% in NP2-CD4/CCR5 cells and peripheral blood mononuclear cells (PBMC), and 24-Res Env exhibiting a very low MPI of ~0 to 12% in both cell types, indicating relatively “weak” and “strong” resistance, respectively. Resistance mutations were strain-specific and mapped to the gp120 V3 loop. Affinity profiling by the 293-Affinofile assay and mathematical modeling using VERSA (Viral Entry Receptor Sensitivity Analysis) metrics revealed that 17-Res and 24-Res Envs engaged MVC-bound CCR5 inefficiently or very efficiently, respectively. Despite highly divergent phenotypes, and a lack of common gp120 resistance mutations, both resistant Envs exhibited an almost superimposable pattern of dramatically increased reliance on sulfated tyrosine residues in the CCR5 N-terminus, and on histidine residues in the CCR5 ECLs. This altered mechanism of CCR5 engagement rendered both the resistant Envs susceptible to neutralization by a sulfated peptide fragment of the CCR5 N-terminus.ConclusionsClinical resistance to MVC may involve divergent Env phenotypes and different genetic alterations in gp120, but the molecular mechanism of resistance of the Envs studied here appears to be related. The increased reliance on sulfated CCR5 N-terminus residues suggests a new avenue to block HIV-1 entry by CCR5 N-terminus sulfopeptidomimetic drugs.

Collaboration


Dive into the Paul A. Ramsland's collaboration.

Top Co-Authors

Avatar

Allen B. Edmundson

Oklahoma Medical Research Foundation

View shared research outputs
Top Co-Authors

Avatar

Elizabeth Yuriev

Oklahoma Medical Research Foundation

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge