Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paul A. Tyler is active.

Publication


Featured researches published by Paul A. Tyler.


PLOS ONE | 2011

Man and the Last Great Wilderness: Human Impact on the Deep Sea

Eva Ramírez-Llodra; Paul A. Tyler; Maria Baker; Odd Aksel Bergstad; Malcolm R. Clark; Elva Escobar; Lisa A. Levin; Lenaick Menot; Ashley A. Rowden; Craig R. Smith; Cindy Lee Van Dover

The deep sea, the largest ecosystem on Earth and one of the least studied, harbours high biodiversity and provides a wealth of resources. Although humans have used the oceans for millennia, technological developments now allow exploitation of fisheries resources, hydrocarbons and minerals below 2000 m depth. The remoteness of the deep seafloor has promoted the disposal of residues and litter. Ocean acidification and climate change now bring a new dimension of global effects. Thus the challenges facing the deep sea are large and accelerating, providing a new imperative for the science community, industry and national and international organizations to work together to develop successful exploitation management and conservation of the deep-sea ecosystem. This paper provides scientific expert judgement and a semi-quantitative analysis of past, present and future impacts of human-related activities on global deep-sea habitats within three categories: disposal, exploitation and climate change. The analysis is the result of a Census of Marine Life – SYNDEEP workshop (September 2008). A detailed review of known impacts and their effects is provided. The analysis shows how, in recent decades, the most significant anthropogenic activities that affect the deep sea have evolved from mainly disposal (past) to exploitation (present). We predict that from now and into the future, increases in atmospheric CO2 and facets and consequences of climate change will have the most impact on deep-sea habitats and their fauna. Synergies between different anthropogenic pressures and associated effects are discussed, indicating that most synergies are related to increased atmospheric CO2 and climate change effects. We identify deep-sea ecosystems we believe are at higher risk from human impacts in the near future: benthic communities on sedimentary upper slopes, cold-water corals, canyon benthic communities and seamount pelagic and benthic communities. We finalise this review with a short discussion on protection and management methods.


Journal of the Marine Biological Association of the United Kingdom | 1999

Reproduction and dispersal at vents and cold seeps

Paul A. Tyler; Craig M. Young

Reproductive cycles are determined from samples taken at regular intervals over a period of time related to the assumed periodicity of the breeding cycle. Fiscal, ship time and sampling constraints have made this almost impossible at deep-sea vents and seeps, but there is an accumulating mass of data that cast light on these processes. It is becoming apparent that most reproductive processes are phylogenetically conservative, even in extreme vent and seep habitats. Reproductive patterns of species occurring at vents and seeps are not dissimilar to those of species from the same phyla found in non-chemosynthetic environments. The demographic structure of most vent and seep animals is undescribed and the maximum ages and growth rates are not known. We know little about how the gametogenic cycle is initiated, though there is a growing body of data on the size at first reproduction. Gametogenic biology has been described from seasonal samples for only one organism from vent/seep environments. For other species, the pattern of gametogenesis has been described from serendipitous samples that allow determination of reproductive effort, but such samples reveal little about energy partitioning during the gametogenic process. Some notable adaptations have been described in mature gametes, including modified sperm. Spawning has been observed for a number of species both in situ and in vitro . Knowledge of the larvae of vent/seep organisms has been derived from laboratory fertilizations, from field collections over vent and seep areas and, for molluscs, from protoconch or prodissoconch size and shape. Larval dispersal has been perhaps the most intractable aspect of reproduction. Because the length of larval life is known for only a single seep organism and no vent organism, we cannot infer dispersal distance from a knowledge of current velocities. Modelling has been used to assess the maximum larval distance that allows effective migration between vent sectors. An indirect approach has been to estimate gene flow within, and between, vent sites using DNA sequencing and electrophoretic techniques. Although data are still equivocal, there are indications of considerable mixing among populations within and between vent sectors of the same ridge. Our knowledge of reproductive biology in vent and seep organisms remains fragmentary, but with molecular and biochemical techniques, emerging larval culture techniques, and increased sampling effort, the pieces of the jigsaw will eventually form an overall picture.


PLOS Biology | 2012

The Discovery of New Deep-Sea Hydrothermal Vent Communities in the Southern Ocean and Implications for Biogeography

Alex D. Rogers; Paul A. Tyler; Douglas P. Connelly; Jonathan T. Copley; Rachael H. James; Robert D Larter; Katrin Linse; Rachel A. Mills; Alberto C. Naveira Garabato; Richard D. Pancost; David A. Pearce; Nicholas Polunin; Christopher R. German; Timothy M. Shank; Philipp H. Boersch-Supan; Belinda J. Alker; Alfred Aquilina; Sarah A. Bennett; Andrew Clarke; Robert J. J. Dinley; Alastair G C Graham; Darryl R. H. Green; Jeffrey A. Hawkes; Laura Hepburn; Ana Hilário; Veerle A.I. Huvenne; Leigh Marsh; Eva Ramírez-Llodra; William D. K. Reid; C. N. Roterman

A survey of Antarctic waters along the East Scotia Ridge in the Southern Ocean reveals a new vent biogeographic province among previously uncharacterized deep-sea hydrothermal vent communities.


Philosophical Transactions of the Royal Society B | 2007

The biodiversity of the deep Southern Ocean benthos

A. Brandt; C. De Broyer; I.G. De Mesel; Kari E. Ellingsen; Andrew J. Gooday; B. Hilbig; Katrin Linse; Michael Thomson; Paul A. Tyler

Our knowledge of the biodiversity of the Southern Ocean (SO) deep benthos is scarce. In this review, we describe the general biodiversity patterns of meio-, macro- and megafaunal taxa, based on historical and recent expeditions, and against the background of the geological events and phylogenetic relationships that have influenced the biodiversity and evolution of the investigated taxa. The relationship of the fauna to environmental parameters, such as water depth, sediment type, food availability and carbonate solubility, as well as species interrelationships, probably have shaped present-day biodiversity patterns as much as evolution. However, different taxa exhibit different large-scale biodiversity and biogeographic patterns. Moreover, there is rarely any clear relationship of biodiversity pattern with depth, latitude or environmental parameters, such as sediment composition or grain size. Similarities and differences between the SO biodiversity and biodiversity of global oceans are outlined. The high percentage (often more than 90%) of new species in almost all taxa, as well as the high degree of endemism of many groups, may reflect undersampling of the area, and it is likely to decrease as more information is gathered about SO deep-sea biodiversity by future expeditions. Indeed, among certain taxa such as the Foraminifera, close links at the species level are already apparent between deep Weddell Sea faunas and those from similar depths in the North Atlantic and Arctic. With regard to the vertical zonation from the shelf edge into deep water, biodiversity patterns among some taxa in the SO might differ from those in other deep-sea areas, due to the deep Antarctic shelf and the evolution of eurybathy in many species, as well as to deep-water production that can fuel the SO deep sea with freshly produced organic matter derived not only from phytoplankton, but also from ice algae.


PLOS ONE | 2014

Marine litter distribution and density in European seas, from the shelves to deep basins

Christopher K. Pham; Eva Ramírez-Llodra; Claudia H.S. Alt; Teresa Amaro; Melanie Bergmann; Miquel Canals; Jaime S. Davies; G.C.A. Duineveld; François Galgani; Kerry L. Howell; Veerle A.I. Huvenne; Eduardo Isidro; Daniel O.B. Jones; Galderic Lastras; Telmo Morato; José N. Gomes-Pereira; Autun Purser; Heather Stewart; Xavier Tubau; David Van Rooij; Paul A. Tyler

Anthropogenic litter is present in all marine habitats, from beaches to the most remote points in the oceans. On the seafloor, marine litter, particularly plastic, can accumulate in high densities with deleterious consequences for its inhabitants. Yet, because of the high cost involved with sampling the seafloor, no large-scale assessment of distribution patterns was available to date. Here, we present data on litter distribution and density collected during 588 video and trawl surveys across 32 sites in European waters. We found litter to be present in the deepest areas and at locations as remote from land as the Charlie-Gibbs Fracture Zone across the Mid-Atlantic Ridge. The highest litter density occurs in submarine canyons, whilst the lowest density can be found on continental shelves and on ocean ridges. Plastic was the most prevalent litter item found on the seafloor. Litter from fishing activities (derelict fishing lines and nets) was particularly common on seamounts, banks, mounds and ocean ridges. Our results highlight the extent of the problem and the need for action to prevent increasing accumulation of litter in marine environments.


Nature Communications | 2012

Hydrothermal vent fields and chemosynthetic biota on the world's deepest seafloor spreading centre.

Douglas P. Connelly; Jonathan T. Copley; Bramley J. Murton; K. Stansfield; Paul A. Tyler; Christopher R. German; Cindy Lee Van Dover; Diva J. Amon; Maaten Furlong; Nancy R. Grindlay; Nicholas W. Hayman; Veit Hühnerbach; Maria Judge; Tim Le Bas; Stephen D. McPhail; Alexandra Meier; Ko-ichi Nakamura; Verity Nye; Miles Pebody; Rolf B. Pedersen; Sophie Plouviez; C. M. Sands; Roger C. Searle; Peter Stevenson; Sarah Taws; Sally Wilcox

The Mid-Cayman spreading centre is an ultraslow-spreading ridge in the Caribbean Sea. Its extreme depth and geographic isolation from other mid-ocean ridges offer insights into the effects of pressure on hydrothermal venting, and the biogeography of vent fauna. Here we report the discovery of two hydrothermal vent fields on the Mid-Cayman spreading centre. The Von Damm Vent Field is located on the upper slopes of an oceanic core complex at a depth of 2,300 m. High-temperature venting in this off-axis setting suggests that the global incidence of vent fields may be underestimated. At a depth of 4,960 m on the Mid-Cayman spreading centre axis, the Beebe Vent Field emits copper-enriched fluids and a buoyant plume that rises 1,100 m, consistent with >400 °C venting from the worlds deepest known hydrothermal system. At both sites, a new morphospecies of alvinocaridid shrimp dominates faunal assemblages, which exhibit similarities to those of Mid-Atlantic vents.


Deep-sea Research Part I-oceanographic Research Papers | 2002

Depth-related distribution and abundance of seastars (Echinodermata: Asteroidea) in the Porcupine Seabight and Porcupine Abyssal Plain, N.E. Atlantic

Kerry L. Howell; David S.M. Billett; Paul A. Tyler

The depth-related distribution of seastar (Echinodermata: Asteroidea) species between 150 and 4950 m in the Porcupine Seabight and Porcupine Abyssal Plain is described. 47 species of asteroid were identified from ~14,000 individuals collected. The bathymetric range of each species is recorded. What are considered quantitative data, from an acoustically monitored epibenthic sledge and supplementary data from otter trawls, are used to display the relative abundance of individuals within their bathymetric range. Asteroid species are found to have very narrow centres of distribution in which they are abundant, despite much wider total adult depth ranges. Centres of distribution may be skewed. This might result from competition for resources or be related to the occurrence of favourable habitats at particular depths. The bathymetric distributions of the juveniles of some species extend outside the adult depth ranges. There is a distinct pattern of zonation with two major regions of faunal change and six distinct zones. An upper slope zone ranges from 150 to ~700 m depth, an upper bathyal zone between 700 and 1100 m, a mid-bathyal zone from 1100 to1700 m and a lower bathyal zone between 1700 and 2500 m. Below 2500 m the lower continental slope and continental rise have a characteristic asteroid fauna. The abyssal zone starts at about 2800 m. Regions of major faunal change are identified at the boundaries of both upper and mid-bathyal zones and at the transition of bathyal to abyssal fauna. Diversity is greatest at ~1800 m, decreasing with depth to ~2600 m before increasing again to high levels at ~4700 m.


Journal of Shellfish Research | 2009

Early Larval Development of the Sydney Rock Oyster Saccostrea glomerata Under Near-Future Predictions of CO2-Driven Ocean Acidification

Sue-Ann Watson; Paul C. Southgate; Paul A. Tyler; Lloyd S. Peck

ABSTRACT Anthropogenic emissions of carbon dioxide (CO2) from fossil fuel combustion and deforestation are rapidly increasing the atmospheric concentration of CO2 and reducing the pH of the oceans. This study shows that predicted near-future levels of ocean acidification have significant negative effects on early larval development of the Sydney rock oyster Saccostrea glomerata (Gould, 1850). CO2 was added to seawater to produce pH levels set at 8.1 (control), 7.8, and 7.6 (actual pH values were 8.11, 7.81, and 7.64, respectively). These treatments represent present-day surface ocean pH, as well as upper (&Dgr; pH ≈ -0.3) and lower (&Dgr; pH ≈ -0.5) pH predictions for the surface oceans in 2100. With decreasing pH, survival of S. glomerata larvae decreased, and growth and development were retarded. Larval survival decreased by 43% at pH 7.8 and by 72% at pH 7.6. Antero-posterior measurement (APM) was reduced by 6.3% at pH 7.8 and 8.7% at pH 7.6, and dorso-ventral measurement (DVM) was reduced by 5.1% atpH 7.8 and 7.5% at pH 7.6. The percentage of empty shells remaining from dead larvae decreased by 16% atpH 7.8 and by 90% at pH 7.6 indicating that the majority of empty shells dissolved within 7 days at pH 7.6. Scanning electron microscope images of 8-day-old larvae show abnormalities on the shell surface at low pH suggesting (1) problems with shell deposition, (2) retarded periostracum formation, and/or (3) increased shell dissolution. Larval life-history stages are considered particularly susceptible to climate change, and this study shows that S. glomerata larvae are sensitive to a high-CO2 world and are, specifically, negatively affected by exposure to pH conditions predicted for the worlds oceans for the year 2100.


PLOS ONE | 2011

A picture on the wall: innovative mapping reveals cold-water coral refuge in submarine canyon.

Veerle A.I. Huvenne; Paul A. Tyler; Doug G. Masson; Elizabeth H. Fisher; Chris Hauton; Veit Hühnerbach; Tim Le Bas; George A. Wolff

Cold-water corals are azooxanthellate species found throughout the ocean at water depths down to 5000 m. They occur in patches, reefs or large mound structures up to 380 m high, and as ecosystem engineers create important habitats for a diverse fauna. However, the majority of these habitats are now within reach of deep-sea bottom trawling. Many have been severely damaged or are under threat, despite recent protection initiatives. Here we present a cold-water coral habitat type that so far has been overlooked – quite literally – and that has received minimal impact from human activities. Vertical and overhanging cliffs in deep-sea canyons, revealed using an innovative approach to marine habitat mapping, are shown to provide the perfect substratum for extensive cold-water coral-based communities. Typical canyon-related processes, including locally enhanced internal tides and focussed downslope organic carbon transport, provide favourable environmental conditions (current regime, food input) to sustain the communities, even outside the optimal depth and density envelopes reported elsewhere in the NE Atlantic. Our findings show that deep-sea canyons can form natural refuges for faunal communities sensitive to anthropogenic disturbance, and have the potential to fulfil the crucial role of larval sources for the recolonisation of damaged sites elsewhere on the margin.


Current Biology | 2008

Adult Antarctic krill feeding at abyssal depths

Andrew Clarke; Paul A. Tyler

Antarctic krill (Euphausia superba) is a large euphausiid, widely distributed within the Southern Ocean [1], and a key species in the Antarctic food web [2]. The Discovery Investigations in the early 20(th) century, coupled with subsequent work with both nets and echosounders, indicated that the bulk of the population of postlarval krill is typically confined to the top 150 m of the water column [1, 3, 4]. Here, we report for the first time the existence of significant numbers of Antarctic krill feeding actively at abyssal depths in the Southern Ocean. Biological observations from the deep-water remotely operated vehicle Isis in the austral summer of 2006/07 have revealed the presence of adult krill (Euphausia superba Dana), including gravid females, at unprecedented depths in Marguerite Bay, western Antarctic Peninsula. Adult krill were found close to the seabed at all depths but were absent from fjords close inshore. At all locations where krill were detected they were seen to be actively feeding, and at many locations there were exuviae (cast molts). These observations revise significantly our understanding of the depth distribution and ecology of Antarctic krill, a central organism in the Southern Ocean ecosystem.

Collaboration


Dive into the Paul A. Tyler's collaboration.

Top Co-Authors

Avatar

John D. Gage

Scottish Association for Marine Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David S.M. Billett

National Oceanography Centre

View shared research outputs
Top Co-Authors

Avatar

J. Copley

University of Southampton

View shared research outputs
Top Co-Authors

Avatar

Lloyd S. Peck

Natural Environment Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Leigh Marsh

University of Southampton

View shared research outputs
Top Co-Authors

Avatar

Alan J. Southward

Marine Biological Association of the United Kingdom

View shared research outputs
Top Co-Authors

Avatar

Veerle A.I. Huvenne

National Oceanography Centre

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge