Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paul A. Weber is active.

Publication


Featured researches published by Paul A. Weber.


Water Research | 2009

Sulfate and metal removal in bioreactors treating acid mine drainage dominated with iron and aluminum.

Craig A. McCauley; Aisling D. O'Sullivan; Mark W. Milke; Paul A. Weber; Dave Trumm

Bioreactors represent an emerging technology for removing metals and sulfate commonly found in acid mine drainage (AMD). Six continuously fed anaerobic bioreactors employing organic and alkaline waste materials were operated to investigate relationships between metal and sulfate removal from AMD. Median AMD influent chemistry was 65.8mg/L Fe (49.7-113mg/L), 46.5mg/L Al (33.5-72.4mg/L) and 608mg/L sulfate (493-1007mg/L). Bioreactors containing mussel shells as an alkaline substrate amendment were more effective at removing metals and sulfate than those containing limestone. Experimental results indicated bioreactor design and operation should be dependent on treatment goals. These include 0.3mol sulfate loading/m(3)/day for sulfate removal (mean of 94.1% (87.6-98.0%), 0.4mol metals/m(3)/day for metal (mean of 99.0% (98.5-99.9%)) and partial sulfate (mean of 46.0% (39.6-57.8%)) removal and 0.8mol metals/m(3)/day for metal (mean of 98.4% (98.2-98.6%) and minimal sulfate (mean of 16.6% (11.9-19.2%)) removal. Aluminum removal efficiency was on average 1.72% (0.04-3.42%) greater than Fe during stable operating conditions.


Chemosphere | 2013

Soil stabilisation using AMD sludge, compost and lignite: TCLP leachability and continuous acid leaching

Daniel C.W. Tsang; William E. Olds; Paul A. Weber; Alex C.K. Yip

Utilising locally available industrial by-products for in situ metal stabilisation presents a low-cost remediation approach for contaminated soil. This study explored the potential use of inorganic (acid mine drainage (AMD) sludge and zero-valent iron) and carbonaceous materials (green waste compost, manure compost, and lignite) for minimising the environmental risks of As and Cu at a timber treatment site. After 9-month soil incubation, significant sequestration of As and Cu in soil solution was accomplished by AMD sludge, on which adsorption and co-precipitation could take place. The efficacy of AMD sludge was comparable to that of zero-valent iron. There was marginal benefit of adding carbonaceous materials. However, in a moderately aggressive environment (Toxicity Characteristic Leaching Procedure), AMD sludge only suppressed the leachability of As but not Cu. Therefore, the provision of compost and lignite augmented the simultaneous reduction of Cu leachability, probably via surface complexation with oxygen-containing functional groups. Under continuous acid leaching in column experiments, combined application of AMD sludge with compost proved more effective than AMD sludge with lignite. This was possibly attributed to the larger amount of dissolved organic matter with aromatic moieties from lignite, which may enhance Cu and As mobility. Nevertheless, care should be taken to mitigate ecological impact associated with short-term substantial Ca release and continuous release of Al at a moderate level under acid leaching. This study also articulated the engineering implications and provided recommendations for field deployment, material processing, and assessment framework to ensure an environmentally sound application of reactive materials.


Journal of Soils and Sediments | 2013

Residual leachability of CCA-contaminated soil after treatment with biodegradable chelating agents and lignite-derived humic substances

Daniel C.W. Tsang; William E. Olds; Paul A. Weber

PurposeThe aim of this study was to enhance the soil remediation of timber treatment sites; the potential application of biodegradable chelating agents and humic substances as enhancing agents was assessed in terms of the residual leachability of chromium, copper and arsenic (CCA).Materials and methodsThis study applied four leachability tests on a field-contaminated soil after 48-h washing with ethylenediamine-N,N-disuccinic acid (EDDS), glutamic-N,N-diacetic acid, ethylenediaminetetraacetic acid and humic substances derived from lignite and two other sources.Results and discussionIt was noteworthy that the reduction in the total metal concentrations after soil washing was not predictive of the leaching behaviour. When assessed by toxicity characteristic leaching procedure (TCLP) and waste extraction test (WET), Cu and As leachability was decreased as a result of their extraction by soil washing. By contrast, when assessed by synthetic precipitation leaching procedure (SPLP) and European Council Waste Acceptance Criteria (ECWAC) tests, Cu and As leachability was found to increase, probably because the effect of destabilization of residual metals during soil washing was more observable in unbuffered leaching solutions. On the other hand, Cr leachability was acceptably low in TCLP and WET but still exceeded drinking water standard in SPLP and ECWAC tests.ConclusionsThe three chelating agents were able to meet the criteria for Cu in all leachability tests, while the limits of As concentrations could only be met by EDDS in TCLP test. The three humic substances reduced the leachate concentrations of Cu and As without destabilizing the residual metals; however, the reduction was insufficient to meet the required limits in all leachability tests considered.


Science of The Total Environment | 2011

Characterisation of acid mine drainage in a high rainfall mountain environment, New Zealand

Hugh Davies; Paul A. Weber; Phil Lindsay; Dave Craw; James Pope

The Stockton coal mine lies at 700-1100 m above sea level in a mountainous orographic precipitation zone on the West Coast of the South Island of New Zealand. Rainfall exceeds 6000 mm/year and arrives with frequent flood events that can deliver > 200 mm/day. Streams vary in discharges by up to two orders of magnitude over a time scale of hours. Pyritic waste rock at the mine interacts chemically with even the most intense rainfall, and almost all runoff is acidic to some degree. In the most intense rain event recorded in this study (> 10 mm/hour), dilution of acid mine drainage (AMD) occurred and pH rose from 3 to >5 over several hours, with stream discharge at a monitoring point rising from <0.5 to >100 cumecs. However, most rain events of similar magnitude are less intense, longer duration, and only raise AMD pH to ~4 with similar high discharges. Results presented here for Stockton confirm that it is the intensity of rain events on the hourly scale, rather than the total amount of rainwater delivered to the site, that governs the amount and composition of AMD generated during flood events. Stream discharge loads of dissolved iron and aluminium range from ~20 to 1000 kg/hour. Dissolved sulfate and acidity loads are typically ~500 kg/hour but can exceed 20 tonnes/hour in rain events. First flush effects observable elsewhere around the world involving peak metal loads following dry periods or seasonal changes are not obvious at Stockton due to the high and variable rainfall environment. Dissolved Fe concentrations may be limited in runoff waters by precipitation of jarosite and schwertmannite, especially when rainfall is sufficiently intense to raise pH to 4 or higher. These minerals are widespread in the exposed waste rock on site. Likewise, precipitation of alunite may occur as pH rises in rain events, but no field evidence for this has been observed.


Journal of the American Society of Mining and Reclamation | 2006

SHORT-TERM ACID ROCK DRAINAGE CHARACTERISTICS DETERMINED BY PASTE pH AND KINETIC NAG TESTING: CYPRESS PROSPECT, NEW ZEALAND 1

Paul A. Weber; Joseph B. Hughes; Liam B. Conner; Phil Lindsay; Roger St; C. Smart

The paste pH test (1 part solid: 2 parts water) is one method used to determine the acidic nature of a rock/soil sample. In conjunction with kinetic NAG testing a classification scheme has been developed for the Cypress Prospect within the Stockton coal mining region, West Coast, New Zealand. Samples having a paste pH of pH 5.0) for samples classified PAF indicated that they have a short-term acid neutralization capacity (ANC) that is greater than the readily available short-term acid generating capacity of the sample. This resulted in a time lag (2 - 356 minutes) prior to decrease to pH 4 in the kinetic NAG test. Samples having a paste pH > 6.0 typically produced a longer lag period than those with a paste pH of 5 - 6. As previous researchers have demonstrated this represents a lag period prior to the onset of laboratory acid rock drainage in larger column leach tests. These results have direct application to strategic mine planning at the proposed Cypress mine including separating waste rock into immediate acid generators (high management priority) from acid generators with a lag to acid formation (lower priority) and non-acid forming. Field validation of this classification system is still needed.


Soil and Sediment Contamination: An International Journal | 2014

Soil washing enhanced by humic substances and biodegradable chelating agents

Neil R. Hartley; Daniel C.W. Tsang; William E. Olds; Paul A. Weber

Industrial timber treatment sites have resulted in widespread soil contamination by Cu, Cr, and As, presenting potential long-term liability and associated risks to human health and the environment. This study evaluated the roles of natural humic substances (lignite-derived humic substances, standard and commercially available humic acids) and biodegradable chelating agents (ethylenediamine-N,N-disuccinic acid (EDDS) and glutamic-N,N-diacetic acid (GLDA)) for soil washing. Batch kinetic experiments revealed that humic substances promoted Cu extraction at pH 8, but they were significantly adsorbed on the soil at pH 4, possibly posing impediment to soil remediation. The metal extraction by EDDS and GLDA was comparable to that of EDTA (ethylenediamine-tetraacetic acid), and it was more effective at pH 4 than pH 8, probably due to acidic dissolution of metal precipitates and oxides. Metal distribution analysis indicated that the carbonate fraction of Cu and the oxide fraction of As and Cr were mainly extracted, while the exchangeable fraction of Cu increased. The residual leachability tests showed that humic substances reduced the Cu and As leachability but the reduction was insufficient. In contrast, EDDS was able to reduce the leachate concentrations of Cu and As to below 5 mg L−1, meeting the waste acceptance criteria for landfill disposal. Nevertheless, soil washing methods and remediation strategy may need further modifications to facilitate site restoration and promote soil recycling.


Environmental Technology | 2013

Utilizing acid mine drainage sludge and coal fly ash for phosphate removal from dairy wastewater

Y.R. Wang; Daniel C.W. Tsang; William E. Olds; Paul A. Weber

This study aims to investigate a new and sustainable approach for the reuse of industrial by-products from wastewater treatment. The dairy industry produces huge volumes of wastewater, characterized by high levels of phosphate that can result in eutrophication and degradation of aquatic ecosystems. This study evaluated the application of acid mine drainage (AMD) sludge, coal fly ash, and lignite as low-cost adsorbents for the removal of phosphate from dairy wastewater. Material characterization using X-ray fluorescence, X-ray diffraction, and Brunauer–Emmett–Teller surface area analysis revealed significant amounts of crystalline/amorphous Fe/Al/Si/Ca-based minerals and large surface areas of AMD sludge and fly ash. Batch adsorption isotherms were best described using the Freundlich model. The Freundlich distribution coefficients were 13.7 mg0.577 L0.423 g−1 and 16.9 mg0.478 L0.522 g−1 for AMD sludge and fly ash, respectively, and the nonlinearity constants suggested favourable adsorption for column applications. The breakthrough curves of fixed-bed columns, containing greater than 10 wt% of the waste materials (individual or composite blends) mixed with sand, indicated that phosphate breakthrough did not occur within 100 pore volumes while the cumulative removal was 522 and 490 mg kg−1 at 10 wt% AMD sludge and 10 wt% fly ash, respectively. By contrast, lignite exhibited negligible phosphate adsorption, possibly due to small amounts of inorganic minerals suitable for phosphate complexation and limited surface area. The results suggest that both AMD sludge and fly ash were potentially effective adsorbents if employed individually at a ratio of 10 wt% or above for column application.


Water Air and Soil Pollution | 2013

Acid Mine Drainage Treatment Assisted by Lignite-Derived Humic Substances

William E. Olds; Daniel C.W. Tsang; Paul A. Weber

Acid mine drainage (AMD) generated by some coal mines in New Zealand is currently treated by the addition of alkaline reagents which neutralize acidity, triggering the precipitation of dissolved metals as insoluble hydroxides. Some trace metals (Ni, Zn, Cu, Cd, and Pb) are discharged into receiving water bodies due to incomplete hydroxide precipitation at circum-neutral pH. This study investigated the incorporation of lignite-derived humic substances (HS) for metal complexation and removal during AMD treatment by Ca(OH)2 and CaCO3 neutralization. For Ca(OH)2 neutralization, addition of HS (regardless of dosing sequence) enhanced the removal of Zn, Cu, and Cd, probably due to the incorporation of metal–humate complex into settling flocs (via aggregation, co-precipitation, and adsorption) that were subsequently removed by sedimentation. However, additional removal of Ni and Pb was statistically indeterminate, which was ascribed to the low complexation affinity of Ni and high removal of Pb by adsorption onto Fe/Al hydroxides. Conversely, for CaCO3 neutralization, addition of HS only marginally enhanced Cd removal, with the removal of metals probably dominated by adsorption onto the abundant undissolved calcite. Equilibrium speciation modelling showed that about 25% and 38% of the remaining Cu and Pb in the treated AMD were complexed with HS, while only 5% of remaining Cd and less than 1 wt% of remaining Ni and Zn were organically complexed. In the AMD-receiving water bodies, about 20 mg l−1 of HS would be required for complete complexation (>95%) of Cu and Pb and 50 mg l−1 for Cd, whereas Zn and Ni complexation would not occur at natural stream HS concentrations.


Journal of the American Society of Mining and Reclamation | 2008

PERFORMANCE OF MESOCOSM-SCALE SULFATE-REDUCING BIOREACTORS FOR TREATING ACID MINE DRAINAGE IN NEW ZEALAND

Craig A. McCauley; Paul A. Weber; Dave Trumm

Water chemistry was monitored monthly for ten months from an acid mine drainage (AMD) seep emanating at Stockton Coal Mine within the Mangatini watershed in New Zealand. Metal concentrations of the seep water were Fe (4.31-146 mg/L), Al (7.43-76.7 mg/L), Cu (0.0201-0.0669 mg/L), Ni (0.0629-0.261 mg/L), Zn (0.380-1.39 mg/L), Cd (0.000540-0.00134 mg/L) and Pb (0.0049-0.0056 mg/L), pH was 2.49-3.34 and total acidity (pH 8.3) was 78.5- 626 mg/L as CaCO3. Water chemistry signature prompted laboratory mesocosm studies measuring the effectiveness of sulfate-reducing bioreactors (SRBRs) for generating alkalinity and sequestering metals. Alkaline materials utilized in the SRBRs included industrial waste products such as mussel shells, nodulated stack dust (NSD) derived from the cement industry, and limestone. Organic substrate materials included post peel, a by-product from fence post manufacture, Pinus radiata bark and compost. Seven SRBRs comprised of varying substrate mixes received aerated AMD for nearly four months. AMD was sourced from the pond that collected the seep water. The SRBR containing NSD successfully removed all metals, but effluent was caustic with pH>9. Bioreactors consisting of 20-30% mussel shells were most successful at immobilizing metals and generating circumneutral effluent. Systems containing mussel shells sequestered more than 0.8 moles of metals/m 3 of substrate/day at stable operating conditions and yielded effluent concentrations (removal efficiencies) of 0.120-3.46 mg/L Fe (96.5-99.8%), 0.0170-0.277 mg/L Al (99.5-99.9%), 99.7->99.9%), 99.7%), 98.3->98.9%) and <0.0001-0.0001 Pb (99.5-<99.7%). The system consisting of limestone as the only alkalinity generating material was less effective (15.4-64.3 mg/L Fe). Results from duplicate systems but different reactor shapes indicated reactor dimensions influence flow characteristics and therefore treatment efficacy.


Journal of Mining | 2013

Nickel and Zinc Removal from Acid Mine Drainage: Roles of Sludge Surface Area and Neutralising Agents

William E. Olds; Daniel C.W. Tsang; Paul A. Weber; Chris G. Weisener

During acid mine drainage (AMD) treatment by alkaline reagent neutralisation, Ni and Zn are partially removed via sorption to Fe and Al hydroxide precipitates. This research evaluated the effect of surface area of precipitates, formed by neutralisation of AMD using three alkalinity reagents (NaOH, Ca(OH)2, and CaCO3), on the sorption of Ni and Zn. The BET surface area of the precipitates formed by neutralisation of AMD with NaOH (173.7 m2 g−1) and Ca(OH)2 (168.2 m2 g−1) was an order of magnitude greater than that produced by CaCO3 neutralisation (16.7 m2 g−1). At pH 6.5, the residual Ni concentration was 0.32 and 0.41 mg L−1 for NaOH and Ca(OH)2 neutralised AMD, respectively, resulting in up to 60% lower Ni concentrations than achieved by CaCO3 neutralisation which had no effect on Ni removal. The residual Zn concentration was even more dependent on precipitate surface area for NaOH and Ca(OH)2 neutralised AMD (0.33 and 1.02 mg L−1), which was up to 85% lower than the CaCO3 neutralised AMD (2.20 mg L−1). These results suggest that the surface area of precipitated flocs and the selection of neutralising reagent critically affect the sorption of Ni and Zn during AMD neutralisation.

Collaboration


Dive into the Paul A. Weber's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel C.W. Tsang

Hong Kong Polytechnic University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

James Pope

University of Canterbury

View shared research outputs
Top Co-Authors

Avatar

Daniel C.W. Tsang

Hong Kong Polytechnic University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark W. Milke

University of Canterbury

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge