Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paul C.M. van den Berk is active.

Publication


Featured researches published by Paul C.M. van den Berk.


Journal of Experimental Medicine | 2006

Strand-biased defect in C/G transversions in hypermutating immunoglobulin genes in Rev1-deficient mice

Jacob G. Jansen; Petra Langerak; Anastasia Tsaalbi-Shtylik; Paul C.M. van den Berk; Heinz Jacobs; Niels de Wind

Somatic hypermutation of Ig genes enables B cells of the germinal center to generate high-affinity immunoglobulin variants. Key intermediates in somatic hypermutation are deoxyuridine lesions, introduced by activation-induced cytidine deaminase. These lesions can be processed further to abasic sites by uracil DNA glycosylase. Mutagenic replication of deoxyuridine, or of its abasic derivative, by translesion synthesis polymerases is hypothesized to underlie somatic hypermutation. Rev1 is a translesion synthesis polymerase that in vitro incorporates uniquely deoxycytidine opposite deoxyuridine and abasic residues. To investigate a role of Rev1 in mammalian somatic hypermutation we have generated mice deficient for Rev1. Although Rev1−/− mice display transient growth retardation, proliferation of Rev1−/− LPS-stimulated B cells is indistinguishable from wild-type cells. In mutated Ig genes from Rev1−/− mice, C to G transversions were virtually absent in the nontranscribed (coding) strand and reduced in the transcribed strand. This defect is associated with an increase of A to T, C to A, and T to C substitutions. These results indicate that Rev1 incorporates deoxycytidine residues, most likely opposite abasic nucleotides, during somatic hypermutation. In addition, loss of Rev1 causes compensatory increase in mutagenesis by other translesion synthesis polymerases.


Journal of Experimental Medicine | 2007

A/T mutagenesis in hypermutated immunoglobulin genes strongly depends on PCNAK164 modification.

Petra Langerak; Anders O.H. Nygren; Peter H.L. Krijger; Paul C.M. van den Berk; Heinz Jacobs

B cells use translesion DNA synthesis (TLS) to introduce somatic mutations around genetic lesions caused by activation-induced cytidine deaminase. Monoubiquitination at lysine164 of proliferating cell nuclear antigen (PCNAK164) stimulates TLS. To determine the role of PCNAK164 modifications in somatic hypermutation, PCNAK164R knock-in mice were generated. PCNAK164R/K164R mutants are born at a sub-Mendelian frequency. Although PCNAK164R/K164R B cells proliferate and class switch normally, the mutation spectrum of hypermutated immunoglobulin (Ig) genes alters dramatically. A strong reduction of mutations at template A/T is associated with a compensatory increase at G/C, which is a phenotype similar to polymerase η (Polη) and mismatch repair–deficient B cells. Mismatch recognition, monoubiquitinated PCNA, and Polη likely cooperate in establishing mutations at template A/T during replication of Ig genes.


Journal of Clinical Oncology | 2005

Immunogenicity, Including Vitiligo, and Feasibility of Vaccination With Autologous GM-CSF–Transduced Tumor Cells in Metastatic Melanoma Patients

Rosalie M. Luiten; Esther W. M. Kueter; Wolter J. Mooi; Maarten P.W. Gallee; Elaine M. Rankin; Winald R. Gerritsen; Shirley M. Clift; Willem J. Nooijen; P. Weder; Willeke van de Kasteele; Johan J. Sein; Paul C.M. van den Berk; Omgo E. Nieweg; Anton Berns; Hergen Spits; Gijsbert C. de Gast

PURPOSE To determine the feasibility, toxicity, and immunologic effects of vaccination with autologous tumor cells retrovirally transduced with the GM-CSF gene, we performed a phase I/II vaccination study in stage IV metastatic melanoma patients. PATIENTS AND METHODS Sixty-four patients were randomly assigned to receive three vaccinations of high-dose or low-dose tumor cells at 3-week intervals. Tumor cell vaccine preparation succeeded for 56 patients (88%), but because of progressive disease, the well-tolerated vaccination was completed in only 28 patients. We analyzed the priming of T cells against melanoma antigens, MART-1, tyrosinase, gp100, MAGE-A1, and MAGE-A3 using human leukocyte antigen/peptide tetramers and functional assays. RESULTS The high-dose vaccination induced the infiltration of T cells into the tumor tissue. Three of 14 patients receiving the high-dose vaccine showed an increase in MART-1- or gp100-specific T cells in the peripheral blood during vaccination. Six patients experienced disease-free survival for more than 5 years, and two of these patients developed vitiligo at multiple sites after vaccination. MART-1- and gp100-specific T cells were found infiltrating in vitiligo skin. Upon vaccination, the T cells acquired an effector phenotype and produced interferon-gamma on specific antigenic stimulation. CONCLUSION We conclude that vaccination with GM-CSF-transduced autologous tumor cells has limited toxicity and can enhance T-cell activation against melanocyte differentiation antigens, which can lead to vitiligo. Whether the induction of autoimmune vitiligo may prolong disease-free survival of metastatic melanoma patients who are surgically rendered as having no evidence of disease before vaccination is worthy of further investigation.


Journal of Experimental Medicine | 2009

Dependence of nucleotide substitutions on Ung2, Msh2, and PCNA-Ub during somatic hypermutation

Peter H.L. Krijger; Petra Langerak; Paul C.M. van den Berk; Heinz Jacobs

During somatic hypermutation (SHM), B cells introduce mutations into their immunoglobulin genes to generate high affinity antibodies. Current models suggest a separation in the generation of G/C transversions by the Ung2-dependent pathway and the generation of A/T mutations by the Msh2/ubiquitinated proliferating cell nuclear antigen (PCNA-Ub)–dependent pathway. It is currently unknown whether these pathways compete to initiate mutagenesis and whether PCNA-Ub functions downstream of Ung2. Furthermore, these models do not explain why mice lacking Msh2 have a more than twofold reduction in the total mutation frequency. Our data indicate that PCNA-Ub is required for A/T mutagenesis downstream of both Msh2 and Ung2. Furthermore, we provide evidence that both pathways are noncompetitive to initiate mutagenesis and even collaborate to generate half of all G/C transversions. These findings significantly add to our understanding of SHM and necessitate an update of present SHM models.


DNA Repair | 2011

HLTF and SHPRH are not essential for PCNA polyubiquitination, survival and somatic hypermutation: Existence of an alternative E3 ligase

Peter H.L. Krijger; Kyoo-young Lee; Niek Wit; Paul C.M. van den Berk; Xiaoli Wu; Henk P. Roest; Alex Maas; Hao Ding; Jan H.J. Hoeijmakers; Kyungjae Myung; Heinz Jacobs

DNA damage tolerance is regulated at least in part at the level of proliferating cell nuclear antigen (PCNA) ubiquitination. Monoubiquitination (PCNA-Ub) at lysine residue 164 (K164) stimulates error-prone translesion synthesis (TLS), Rad5-dependent polyubiquitination (PCNA-Ub(n)) stimulates error-free template switching (TS). To generate high affinity antibodies by somatic hypermutation (SHM), B cells profit from error-prone TLS polymerases. Consistent with the role of PCNA-Ub in stimulating TLS, hypermutated B cells of PCNA(K164R) mutant mice display a defect in generating selective point mutations. Two Rad5 orthologs, HLTF and SHPRH have been identified as alternative E3 ligases generating PCNA-Ub(n) in mammals. As PCNA-Ub and PCNA-Ub(n) both make use of K164, error-free PCNA-Ub(n)-dependent TS may suppress error-prone PCNA-Ub-dependent TLS. To determine a regulatory role of Shprh and Hltf in SHM, we generated Shprh/Hltf double mutant mice. Interestingly, while the formation of PCNA-Ub and PCNA-Ub(n) is prohibited in PCNA(K164R) MEFs, the formation of PCNA-Ub(n) is not abolished in Shprh/Hltf mutant MEFs. In line with these observations Shprh/Hltf double mutant B cells were not hypersensitive to DNA damage. Furthermore, SHM was normal in Shprh/Hltf mutant B cells. These data suggest the existence of an alternative E3 ligase in the generation of PCNA-Ub(n).


DNA Repair | 2011

PCNA ubiquitination-independent activation of polymerase η during somatic hypermutation and DNA damage tolerance.

Peter H.L. Krijger; Paul C.M. van den Berk; Niek Wit; Petra Langerak; Jacob G. Jansen; Claude-Agnès Reynaud; Niels de Wind; Heinz Jacobs

The generation of high affinity antibodies in B cells critically depends on translesion synthesis (TLS) polymerases that introduce mutations into immunoglobulin genes during somatic hypermutation (SHM). The majority of mutations at A/T base pairs during SHM require ubiquitination of PCNA at lysine 164 (PCNA-Ub), which activates TLS polymerases. By comparing the mutation spectra in B cells of WT, TLS polymerase η (Polη)-deficient, PCNA(K164R)-mutant, and PCNA(K164R);Polη double-mutant mice, we now find that most PCNA-Ub-independent A/T mutagenesis during SHM is mediated by Polη. In addition, upon exposure to various DNA damaging agents, PCNA(K164R) mutant cells display strongly impaired recruitment of TLS polymerases, reduced daughter strand maturation and hypersensitivity. Interestingly, compared to the single mutants, PCNA(K164R);Polη double-mutant cells are dramatically delayed in S phase progression and far more prone to cell death following UV exposure. Taken together, these data support the existence of PCNA ubiquitination-dependent and -independent activation pathways of Polη during SHM and DNA damage tolerance.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Pro-B cells sense productive immunoglobulin heavy chain rearrangement irrespective of polypeptide production

Johannes Lutz; Marinus R. Heideman; Edith Roth; Paul C.M. van den Berk; Werner Müller; Chander Raman; Matthias Wabl; Heinz Jacobs; Hans-Martin Jäck

B-lymphocyte development is dictated by the protein products of functionally rearranged Ig heavy (H) and light (L) chain genes. Ig rearrangement begins in pro-B cells at the IgH locus. If pro-B cells generate a productive allele, they assemble a pre-B cell receptor complex, which signals their differentiation into pre-B cells and their clonal expansion. Pre-B cell receptor signals are also thought to contribute to allelic exclusion by preventing further IgH rearrangements. Here we show in two independent mouse models that the accumulation of a stabilized μH mRNA that does not encode μH chain protein specifically impairs pro-B cell differentiation and reduces the frequency of rearranged IgH genes in a dose-dependent manner. Because noncoding IgH mRNA is usually rapidly degraded by the nonsense-mediated mRNA decay machinery, we propose that the difference in mRNA stability allows pro-B cells to distinguish between productive and nonproductive Ig gene rearrangements and that μH mRNA may thus contribute to efficient H chain allelic exclusion.


Journal of Experimental Medicine | 2014

Tight regulation of ubiquitin-mediated DNA damage response by USP3 preserves the functional integrity of hematopoietic stem cells.

Cesare Lancini; Paul C.M. van den Berk; Joseph H.A. Vissers; Gaetano Gargiulo; Ji-Ying Song; Danielle Hulsman; Michela Serresi; Ellen Tanger; Marleen Blom; Conchita Vens; Maarten van Lohuizen; Heinz Jacobs; Elisabetta Citterio

In vivo deletion of USP3, a deubiquitinating enzyme involved in DNA damage repair, increases the incidence of spontaneous cancer and impairs the proliferation and repopulation ability of HSCs.


PLOS ONE | 2013

Differential programming of B cells in AID deficient mice.

Marc A. Hogenbirk; Marinus R. Heideman; Arno Velds; Paul C.M. van den Berk; Ron M. Kerkhoven; Bas van Steensel; Heinz Jacobs

The Aicda locus encodes the activation induced cytidine deaminase (AID) and is highly expressed in germinal center (GC) B cells to initiate somatic hypermutation (SHM) and class switch recombination (CSR) of immunoglobulin (Ig) genes. Besides these Ig specific activities in B cells, AID has been implicated in active DNA demethylation in non-B cell systems. We here determined a potential role of AID as an epigenetic eraser and transcriptional regulator in B cells. RNA-Seq on different B cell subsets revealed that Aicda−/− B cells are developmentally affected. However as shown by RNA-Seq, MethylCap-Seq, and SNP analysis these transcriptome alterations may not relate to AID, but alternatively to a CBA mouse strain derived region around the targeted Aicda locus. These unexpected confounding parameters provide alternative, AID-independent interpretations on genotype-phenotype correlations previously reported in numerous studies on AID using the Aicda−/− mouse strain.


Journal of Cell Biology | 2014

Tight regulation of ubiquitin-mediated DNA damage response by USP3 preserves the functional integrity of hematopoietic stem cells

Cesare Lancini; Paul C.M. van den Berk; Joseph H.A. Vissers; Gaetano Gargiulo; Ji-Ying Song; Danielle Hulsman; Michela Serresi; Ellen Tanger; Marleen Blom; Conchita Vens; Maarten van Lohuizen; Heinz Jacobs; Elisabetta Citterio

Histone ubiquitination at DNA breaks is required for activation of the DNA damage response (DDR) and DNA repair. How the dynamic removal of this modification by deubiquitinating enzymes (DUBs) impacts genome maintenance in vivo is largely unknown. To address this question, we generated mice deficient for Ub-specific protease 3 (USP3; Usp3{delta}/{delta}), a histone H2A DUB which negatively regulates ubiquitin-dependent DDR signaling. Notably, USP3 deletion increased the levels of histone ubiquitination in adult tissues, reduced the hematopoietic stem cell (HSC) reserves over time, and shortened animal life span. Mechanistically, our data show that USP3 is important in HSC homeostasis, preserving HSC self-renewal, and repopulation potential in vivo and proliferation in vitro. A defective DDR and unresolved spontaneous DNA damage contribute to cell cycle restriction of Usp3{delta}/{delta} HSCs. Beyond the hematopoietic system, Usp3{delta}/{delta} animals spontaneously developed tumors, and primary Usp3{delta}/{delta} cells failed to preserve chromosomal integrity. These findings broadly support the regulation of chromatin ubiquitination as a key pathway in preserving tissue function through modulation of the response to genotoxic stress.

Collaboration


Dive into the Paul C.M. van den Berk's collaboration.

Top Co-Authors

Avatar

Heinz Jacobs

Netherlands Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Peter H.L. Krijger

Netherlands Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Niek Wit

Netherlands Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Petra Langerak

Netherlands Cancer Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cesare Lancini

Netherlands Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Elisabetta Citterio

Netherlands Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Jacob G. Jansen

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anastasia Tsaalbi-Shtylik

Leiden University Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge