Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paul Christian is active.

Publication


Featured researches published by Paul Christian.


Crystal Growth & Design | 2015

Surface-Induced Polymorphism as a Tool for Enhanced Dissolution: The Example of Phenytoin.

Daniela Reischl; Christian Röthel; Paul Christian; Eva Roblegg; Heike M. A. Ehmann; Ingo Salzmann; Oliver Werzer

Polymorphism and morphology can represent key factors tremendously limiting the bioavailability of active pharmaceutical ingredients (API), in particular, due to solubility issues. Within this work, the generation of a yet unknown surface-induced polymorph (SIP) of the model drug, 5,5-diphenylimidazolidin-2,4-dion (phenytoin), is demonstrated in thin films through altering the crystallization kinetics and the solvent type. Atomic force microscopy points toward the presence of large single-crystalline domains of the SIP, which is in contrast to samples comprising solely the bulk phase, where extended dendritic phenytoin networks are observed. Grazing incidence X-ray diffraction reveals unit cell dimensions of the SIP significantly different from those of the known bulk crystal structure of phenytoin. Moreover, the aqueous dissolution performance of the new polymorph is benchmarked against a pure bulk phase reference sample. Our results demonstrate that the SIP exhibits markedly advantageous drug release performance in terms of dissolution time. These findings suggest that thin-film growth of pharmaceutical systems in general should be explored, where poor aqueous dissolution represents a key limiting factor in pharmaceutical applications, and illustrate the experimental pathway for determining the physical properties of a pharmaceutically relevant SIP.


ACS Applied Materials & Interfaces | 2016

Polymer Encapsulation of an Amorphous Pharmaceutical by initiated Chemical Vapor Deposition for Enhanced Stability

Paul Christian; Heike M. A. Ehmann; Anna Maria Coclite; Oliver Werzer

The usage of amorphous solids in practical applications, such as in medication, is commonly limited by the poor long-term stability of this state, because unwanted crystalline transitions occur. In this study, three different polymeric coatings are investigated for their ability to stabilize amorphous films of the model drug clotrimazole and to protect against thermally induced transitions. For this, drop cast films of clotrimazole are encapsulated by initiated chemical vapor deposition (iCVD), using perfluorodecyl acrylate (PFDA), hydroxyethyl methacrylate (HEMA), and methacrylic acid (MAA). The iCVD technique operates under solvent-free conditions at low temperatures, thus leaving the solid state of the encapsulated layer unaffected. Optical microscopy and X-ray diffraction data reveal that at ambient conditions of about 22 °C, any of these iCVD layers extends the lifetime of the amorphous state significantly. At higher temperatures (50 or 70 °C), the p-PFDA coating is unable to provide protection, while the p-HEMA and p-MAA strongly reduce the crystallization rate. Furthermore, p-HEMA and p-MAA selectively facilitate a preferential alignment of clotrimazole and, interestingly, even suppress crystallization upon a temporary, rapid temperature increase (3 °C/min, up to 150 °C). The results of this study demonstrate how a polymeric coating, synthesized directly on top of an amorphous phase, can act as a stabilizing agent against crystalline transitions, which makes this approach interesting for a variety of applications.


Crystal Growth & Design | 2016

Crystallization of Carbamazepine in Proximity to Its Precursor Iminostilbene and a Silica Surface

Paul Christian; Christian Röthel; Martin Tazreiter; Andreas Zimmer; Ingo Salzmann; Roland Resel; Oliver Werzer

Amorphous films of the anticonvulsant drug carbamazepine are easily accessible by various methods, while the crystallization into specific polymorphs represents a challenging and time-consuming task. In this work, the crystallization of drop cast carbamazepine at silica surfaces is investigated by atomic force microscopy and both in situ and ex situ grazing incidence X-ray diffraction. The pristine films grow with low crystallization rates into a triclinic polymorph, exhibiting poor orientational order within films. However, if iminostilbene, a chemical precursor of carbamazepine, is added to the solution, enhanced crystallization rates result. The individual components crystallize phase-separated upon solvent evaporation without the formation of cocrystals. Iminostilbene reduces the time scale of carbamazepine crystallization from several hours to minutes. Besides the change in crystallization dynamics, iminostilbene induces order to the carbamazepine crystallites, evident as a 110 texture. In situ data of intermixed solutions demonstrate that iminostilbene crystallization occurs first. The iminostilbene crystals then act as templates for carbamazepine growth, whereby fully epitaxial growth is suggested from the results. The findings motivate such an approach for other systems, as this solution-processed, intrinsic epitaxial behavior might be employed in up-scaled manufacturing processes.


Scientific Reports | 2018

Controlling Indomethacin Release through Vapor-Phase Deposited Hydrogel Films by Adjusting the Cross-linker Density

Paul Christian; Stephan Tumphart; Heike M. A. Ehmann; Hans Riegler; Anna Maria Coclite; Oliver Werzer

Vapor-phase deposited polymer coatings are applied on thin indomethacin films to modify the drug release. Hydrogel-forming co-polymers of 2-hydroxyethyl methacrylate and ethylene glycol dimethacrylate were prepared directly on top of solution cast indomethacin thin films by initiated Chemical Vapor Deposition (iCVD). This technique allows for solvent-free processing under mild conditions, thus minimizing a potential impact on the pharmaceutical. The drug release behavior, among other properties, was evaluated for polymers of different compositions and at different temperatures. The data show that the release kinetics can be tuned by several orders of magnitude as the cross-linker fraction is varied in the polymer coating. While uncoated indomethacin films were fully released within an hour, polymer coatings showed gradual liberation over several hours to days. Additional insight is gained from evaluating the experimental dissolution data in the framework of diffusive transport. The results of this study show that the iCVD technique has some promises for pharmaceutical technology, potentially allowing for tailored release behavior also for other drug systems.


Macromolecules | 2018

Growth Regimes of Poly(perfluorodecyl acrylate) Thin Films by Initiated Chemical Vapor Deposition

Alberto Perrotta; Paul Christian; Andrew O. F. Jones; Fabian Muralter; Anna Maria Coclite

Control over thin film growth (e.g., crystallographic orientation and morphology) is of high technological interest as it affects several physicochemical material properties, such as chemical affinity, mechanical stability, and surface morphology. The effect of process parameters on the molecular organization of perfluorinated polymers deposited via initiated chemical vapor deposition (iCVD) has been previously reported. We showed that the tendency of poly(1H,1H,2H,2H-perfluorodecyl acrylate) (pPFDA) to organize in an ordered lamellar structure is a function of the filament and substrate temperatures adopted during the iCVD process. In this contribution, a more thorough investigation of the effect of such parameters is presented, using synchrotron radiation grazing incidence and specular X-ray diffraction (GIXD and XRD) and atomic force microscopy (AFM). The parameters influencing the amorphization, mosaicity, and preferential orientation are addressed. Different growth regimes were witnessed, characterized by a different surface structuring and by the presence of particular crystallographic textures. The combination of morphological and crystallographic analyses allowed the identification of pPFDA growth possibilities between island or columnar growth.


Journal of Vacuum Science and Technology | 2018

Tuning of material properties of ZnO thin films grown by plasma-enhanced atomic layer deposition at room temperature

Julian Pilz; Alberto Perrotta; Paul Christian; Martin Tazreiter; Roland Resel; G. Leising; Thomas Griesser; Anna Maria Coclite

The ability to grow inorganic thin films with highly controllable structural and optical properties at low substrate temperature enables the manufacturing of functional devices on thermo-sensitive substrates without the need of material postprocessing. In this study, the authors report on the growth of zinc oxide films by direct plasma-enhanced atomic layer deposition at near room temperature. Diethyl zinc and oxygen plasma were used as the precursor and coreactant, respectively. The process was optimized with respect to the precursor and coreactant dosing as well as to the purging times, which ultimately resulted in saturated atomic layer deposition growth. The so-obtained films exhibit a polycrystalline pattern with a (100) texture and low amount of incorporated carbon. Furthermore, the possibility to tune crystallite size, refractive index, and bandgap of the films by adapting the plasma radio-frequency power is demonstrated.


Beilstein Journal of Nanotechnology | 2017

Vapor-phase-synthesized fluoroacrylate polymer thin films: thermal stability and structural properties

Paul Christian; Anna Maria Coclite

In this study, the thermal, chemical and structural stability of 1H,1H,2H,2H-perfluorodecyl acrylate polymers (p-PFDA) synthetized by initiated chemical vapor deposition (iCVD) were investigated. PFDA polymers are known for their interesting crystalline aggregation into a lamellar structure that induces super-hydrophobicity and oleophobicity. Nevertheless, when considering applications which involve chemical, mechanical and thermal stresses, it is important to know the limits under which the crystalline aggregation and the resulting polymer properties are stable. For this, chemical, morphological and structural properties upon multiple heating/cooling cycles were investigated both for linear PFDA polymers and for differently strong cross-linked alterations thereof. Heat treatment leaves the chemical composition of the linear PFDA polymers largely unchanged, while a more ordered crystalline structure with smoother morphology is observed. At the same time, the hydrophobicity and the integrity of the polymer deteriorate upon heating. The integrity and hydrophobicity of cross-linked p-PFDA films was preserved likely because of the lack of internal strain due to the coexistence of both crystalline and amorphous phases. The possibility to finely tune the degree of cross-linking can therefore expand the application portfolio in which PFDA polymers can be utilized.


Analytical Methods | 2017

Simple method for the quantitative analysis of thin copolymer films on substrates by infrared spectroscopy using direct calibration

Martin Tazreiter; Paul Christian; Robert Schennach; Thomas Grießer; Anna Maria Coclite

Automated baseline estimation followed by least squares fitting of copolymer spectrum allows quantification in terms of comonomer volume fraction.


ACS Omega | 2017

Solvent Vapor Annealing of Amorphous Carbamazepine Films for Fast Polymorph Screening and Dissolution Alteration

Benedikt Schrode; Brigitta Bodak; Hans Riegler; Andreas Zimmer; Paul Christian; Oliver Werzer

Solubility enhancement and thus higher bioavailability are of great importance and a constant challenge in pharmaceutical research whereby polymorph screening and selection is one of the most important tasks. A very promising approach for polymorph screening is solvent vapor annealing where a sample is exposed to an atmosphere saturated with molecules of a specific chemical/solvent. In this work, amorphous carbamazepine thin films were prepared by spin coating, and the transformation into crystalline forms under exposure to solvent vapors was investigated. Employing grazing incidence X-ray diffraction, four distinct carbamazepine polymorphs, a solvate, and hydrates could be identified, while optical microscopy showed mainly spherulitic morphologies. In vitro dissolution experiments revealed different carbamazepine release from the various thin-film samples containing distinct polymorphic compositions: heat treatment of amorphous samples at 80 °C results in an immediate release; samples exposed to EtOH vapors show a drug release about 5 times slower than this immediate one; and all the others had intermediate release profiles. Noteworthy, even the sample of slowest release has a manifold faster release compared to a standard powder sample demonstrating the capabilities of thin-film preparation for faster drug release in general. Despite the small number of samples in this screening experiment, the results clearly show how solvent vapor annealing can assist in identifying potential polymorphs and allows for estimating their impact on properties like bioavailability.


Synthetic Metals | 2016

Mixed side-chain geometries for aggregation control of poly(fluorene-alt-bithiophene) and their effects on photophysics and charge transport

Olivia Kettner; Andreas Pein; Gregor Trimmel; Paul Christian; Christian Röthel; Ingo Salzmann; Roland Resel; Girish Lakhwani; Florian Lombeck; Michael Sommer; Bettina Friedel

Abstract In organic optoelectronics, order of conjugated molecules is required for good charge transport, but strong aggregation behavior may generate grain boundaries and trapping, opposing those benefits. Side chains on a polymer’s backbone are major reason for and also tool to modify its morphological characteristics. In this report, we show on the example poly(9,9-dioctylfluorenyl- co -bithiophene) (F8T2) that by a combination of two types of side-chains on the backbone of equal number of carbons, one promoting crystallization, another hindering it, organization of the main chains can be controlled, without changing its major properties. We compare the traditional F8T2 derivative with octyl substituent with two modified species, one containing solely 2-ethylhexyl side-chains and another with both types randomly distributed. Thermal characteristics, photophysics and morphology are compared and effects on film formation and charge transport in bulk-heterojunction blends demonstrated on photovoltaic devices utilizing F8T2s as donor and the fullerene derivative ICBA as acceptor material.

Collaboration


Dive into the Paul Christian's collaboration.

Top Co-Authors

Avatar

Anna Maria Coclite

Graz University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christian Röthel

Graz University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Roland Resel

Graz University of Technology

View shared research outputs
Top Co-Authors

Avatar

Ingo Salzmann

Humboldt University of Berlin

View shared research outputs
Top Co-Authors

Avatar

Martin Tazreiter

Graz University of Technology

View shared research outputs
Top Co-Authors

Avatar

Alberto Perrotta

Graz University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew O. F. Jones

Graz University of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge