Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paul D. Feldman is active.

Publication


Featured researches published by Paul D. Feldman.


The Astrophysical Journal | 2000

Overview of the Far Ultraviolet Spectroscopic Explorer Mission

H. W. Moos; Webster Cash; L. L. Cowie; Arthur F. Davidsen; Andrea K. Dupree; Paul D. Feldman; Scott D. Friedman; James C. Green; R. F. Green; C. Gry; J. B. Hutchings; Edward B. Jenkins; J. L. Linsky; Roger F. Malina; Andrew G. Michalitsianos; Blair D. Savage; J. M. Shull; O. H. W. Siegmund; Theodore P. Snow; George Sonneborn; A. Vidal-Madjar; Allan J. Willis; Bruce E. Woodgate; D. G. York; Thomas B. Ake; B-G Andersson; John Paul Andrews; Robert H. Barkhouser; Luciana Bianchi; William P. Blair

The Far Ultraviolet Spectroscopic Explorer satellite observes light in the far-ultraviolet spectral region, 905-1187 Angstrom, with a high spectral resolution. The instrument consists of four co-aligned prime-focus telescopes and Rowland spectrographs with microchannel plate detectors. Two of the telescope channels use Al :LiF coatings for optimum reflectivity between approximately 1000 and 1187 Angstrom, and the other two channels use SiC coatings for optimized throughput between 905 and 1105 Angstrom. The gratings are holographically ruled to correct largely for astigmatism and to minimize scattered light. The microchannel plate detectors have KBr photocathodes and use photon counting to achieve good quantum efficiency with low background signal. The sensitivity is sufficient to examine reddened lines of sight within the Milky Way and also sufficient to use as active galactic nuclei and QSOs for absorption-line studies of both Milky Way and extragalactic gas clouds. This spectral region contains a number of key scientific diagnostics, including O VI, H I, D I, and the strong electronic transitions of H-2 and HD.


The Astronomical Journal | 2013

The multi-object, fiber-fed spectrographs for the Sloan Digital Sky Survey and the Baryon Oscillation Spectroscopic Survey

Stephen A. Smee; James E. Gunn; Alan Uomoto; N. A. Roe; David J. Schlegel; Constance M. Rockosi; Michael A. Carr; French Leger; Kyle S. Dawson; Matthew D. Olmstead; J. Brinkmann; Russell Owen; Robert H. Barkhouser; K. Honscheid; Paul Harding; Dan Long; Robert H. Lupton; Craig Loomis; Lauren Anderson; James Annis; Mariangela Bernardi; Vaishali Bhardwaj; Dmitry Bizyaev; Adam S. Bolton; Howard J. Brewington; John W. Briggs; Scott Burles; James G. Burns; Francisco J. Castander; Andrew J. Connolly

We present the design and performance of the multi-object fiber spectrographs for the Sloan Digital Sky Survey (SDSS) and their upgrade for the Baryon Oscillation Spectroscopic Survey (BOSS). Originally commissioned in Fall 1999 on the 2.5 m aperture Sloan Telescope at Apache Point Observatory, the spectrographs produced more than 1.5 million spectra for the SDSS and SDSS-II surveys, enabling a wide variety of Galactic and extra-galactic science including the first observation of baryon acoustic oscillations in 2005. The spectrographs were upgraded in 2009 and are currently in use for BOSS, the flagship survey of the third-generation SDSS-III project. BOSS will measure redshifts of 1.35 million massive galaxies to redshift 0.7 and Lyα absorption of 160,000 high redshift quasars over 10,000 deg2 of sky, making percent level measurements of the absolute cosmic distance scale of the universe and placing tight constraints on the equation of state of dark energy. The twin multi-object fiber spectrographs utilize a simple optical layout with reflective collimators, gratings, all-refractive cameras, and state-of-the-art CCD detectors to produce hundreds of spectra simultaneously in two channels over a bandpass covering the near-ultraviolet to the near-infrared, with a resolving power R = λ/FWHM ~ 2000. Building on proven heritage, the spectrographs were upgraded for BOSS with volume-phase holographic gratings and modern CCD detectors, improving the peak throughput by nearly a factor of two, extending the bandpass to cover 360 nm < λ < 1000 nm, and increasing the number of fibers from 640 to 1000 per exposure. In this paper we describe the original SDSS spectrograph design and the upgrades implemented for BOSS, and document the predicted and measured performances.


The Astronomical Journal | 1984

Comet Bowell 1980b

Paul D. Feldman; Robert L. Millis; D. T. Thompson; Michael F. A'Hearn; David G. Schleicher

Optical filter photometry, and optical and ultraviolet spectrophotometry data collected between November 1980 and June 1982 of Comet Bowell are presented. It was determined that Comet Bowell began producing significant amounts of OH, though not other species, before perihelion at a heliocentric distance near 4.6 AU. As the comet approached perihelion at 3.4 AU, OH production decreased and CN and C2 species were detected at normal concentrations. An outburst in April 1982 was dominated by OH. The grains in 1982 near perihelion showed increases in albedo between 3150 and 4500 A and 1.2 and 1.6 microns. The presence of two grains populations was suggested, together with the conclusion that Comet Bowell was physically a typical new comet entering the inner solar system from the Oort cloud for the first time.


The Astrophysical Journal | 2000

On-Orbit Performance of the Far Ultraviolet Spectroscopic Explorer Satellite

David J. Sahnow; H. W. Moos; Thomas B. Ake; J. Andersen; B-G Andersson; M. Andre; D. Artis; A. F. Berman; William P. Blair; Kenneth R. Brownsberger; H. M. Calvani; Pierre Chayer; Steven J. Conard; Paul D. Feldman; Scott D. Friedman; A. W. Fullerton; G. A. Gaines; W. C. Gawne; James C. Green; M. A. Gummin; T. B. Jennings; J. B. Joyce; Mary Elizabeth Kaiser; Jeffrey W. Kruk; D. J. Lindler; Derck L. Massa; Edward M. Murphy; William R. Oegerle; Raymond G. Ohl; Bryce A. Roberts

The launch of the Far Ultraviolet Spectroscopic Explorer (FUSE) has been followed by an extensive period of calibration and characterization as part of the preparation for normal satellite operations. Major tasks carried out during this period include the initial coalignment, focusing, and characterization of the four instrument channels and a preliminary measurement of the resolution and throughput performance of the instrument. We describe the results from this test program and present preliminary estimates of the on-orbit performance of the FUSE satellite based on a combination of these data and prelaunch laboratory measurements.


The Astrophysical Journal | 2005

The Morphology-Density Relation in z ~ 1 Clusters

Marc Postman; Marijn Franx; N. J. G. Cross; B. Holden; Holland C. Ford; G. D. Illingworth; Tomotsugu Goto; R. Demarco; P. Rosati; John P. Blakeslee; K.-V. Tran; N. Benítez; M. Clampin; George F. Hartig; N. Homeier; D. R. Ardila; Frank Bartko; R. J. Bouwens; L. Bradley; T. J. Broadhurst; Robert A. Brown; Christopher J. Burrows; E. S. Cheng; Paul D. Feldman; David A. Golimowski; Caryl Gronwall; L. Infante; Randy A. Kimble; John E. Krist; Michael P. Lesser

We measure the morphology-density relation (MDR) and morphology-radius relation (MRR) for galaxies in seven z ~ 1 clusters that have been observed with the Advanced Camera for Surveys (ACS) on board the Hubble Space Telescope. Simulations and independent comparisons of our visually derived morphologies indicate that ACS allows one to distinguish between E, S0, and spiral morphologies down to z850 = 24, corresponding to L/L* = 0.21 and 0.30 at z = 0.83 and 1.24, respectively. We adopt density and radius estimation methods that match those used at lower redshift in order to study the evolution of the MDR and MRR. We detect a change in the MDR between 0.8 < z < 1.2 and that observed at z ~ 0, consistent with recent work; specifically, the growth in the bulge-dominated galaxy fraction, fE+S0, with increasing density proceeds less rapidly at z ~ 1 than it does at z ~ 0. At z ~ 1 and Σ ≥ 500 galaxies Mpc-2, we find fE+S0 = 0.72 ± 0.10. At z ~ 0, an E+S0 population fraction of this magnitude occurs at densities about 5 times smaller. The evolution in the MDR is confined to densities Σ 40 galaxies Mpc-2 and appears to be primarily due to a deficit of S0 galaxies and an excess of Sp+Irr galaxies relative to the local galaxy population. The fE-density relation exhibits no significant evolution between z = 1 and 0. We find mild evidence to suggest that the MDR is dependent on the bolometric X-ray luminosity of the intracluster medium. Implications for the evolution of the disk galaxy population in dense regions are discussed in the context of these observations.


The Astrophysical Journal | 1998

The Far-Ultraviolet Oxygen Airglow of Europa and Ganymede

D. T. Hall; Paul D. Feldman; Melissa A. McGrath; Darrell F. Strobel

Far-UV spectra of Europa and Ganymede, acquired by the Hubble Space Telescope Goddard High Resolution Spectrograph, indicate that, in addition to faintly reflected sunlight, both satellites emit O I 1304 A and O I 1356 A airglow radiation. The observed brightnesses of the reflected solar C II 1335 A feature indicate that the disk-averaged albedos of Europa and Ganymede are about 1.5% and 2.6%, respectively. Airglow emissions from both satellites are characterized by the flux ratio F(1356 A)/F(1304 A) of roughly 1-2, diagnostic of dissociative electron impact excitation of O2. Inferred O2 vertical column densities are in the range (2.4-14) × 1014 cm-2 for Europa and (1-10) × 1014 cm-2 for Ganymede. The observed double-peaked profile of Ganymedes O I 1356 A feature indicates a nonuniform spatial emission distribution that suggests two distinct and spatially-confined emission regions, consistent with the satellites north and south poles.


Science | 1996

Far-Ultraviolet Imaging of Jupiter's Aurora and the Io “Footprint”

John Clarke; G. E. Ballester; John T. Trauger; Robin W. Evans; J. E. P. Connerney; Karl R. Stapelfeldt; David Crisp; Paul D. Feldman; Christopher J. Burrows; Stefano Casertano; John S. Gallagher; Richard E. Griffiths; J. Jeff Hester; John G. Hoessel; Jon A. Holtzman; John E. Krist; Vikki Meadows; Jeremy R. Mould; Paul A. Scowen; Alan M. Watson; James A. Westphal

Far-ultraviolet images of Jupiter from the Hubble Space Telescope Wide Field Planetary Camera 2 reveal polar auroral emissions at 300 kilometer resolution and three times higher sensitivity than previously achieved. Persistent features include a main oval containing most of the emission and magnetically connected to the middle magnetosphere, diffuse and variable emissions poleward of the main oval, and discrete emission from Ios magnetic footprint equatorward of the oval. The auroral emissions are variable, exhibit magnetic conjugacy, and are visible above the planet limb. All emissions approximately co-rotate with Jupiter except the Io “footprint,” which is fixed along Ios magnetic flux tube.


Science | 2014

Transient Water Vapor at Europa’s South Pole

Lorenz Roth; Joachim Saur; Kurt D. Retherford; Darrell F. Strobel; Paul D. Feldman; Melissa A. McGrath; Francis Nimmo

Europas Plumes Jupiters moon Europa has a subsurface ocean and a relatively young icy surface. Roth et al. (p. 171, published online 12 December 2013; see the Perspective by Spencer) analyzed spectral images taken by the Hubble Space Telescope that show ultraviolet emissions from the moons atmosphere, and report a statistically significant emission signal extending above the satellites southern hemisphere. This emission is consistent with two 200-km-high plumes of water vapor. Tidal stresses likely play a role in opening and closing fractures at the surface. Hubble Space Telescope images of Jupiter’s moon Europa reveal emission consistent with transient water vapor plumes. [Also see Perspective by Spencer] In November and December 2012, the Hubble Space Telescope (HST) imaged Europa’s ultraviolet emissions in the search for vapor plume activity. We report statistically significant coincident surpluses of hydrogen Lyman-α and oxygen OI 130.4-nanometer emissions above the southern hemisphere in December 2012. These emissions were persistently found in the same area over the 7 hours of the observation, suggesting atmospheric inhomogeneity; they are consistent with two 200-km-high plumes of water vapor with line-of-sight column densities of about 1020 per square meter. Nondetection in November 2012 and in previous HST images from 1999 suggests varying plume activity that might depend on changing surface stresses based on Europa’s orbital phases. The plume was present when Europa was near apocenter and was not detected close to its pericenter, in agreement with tidal modeling predictions.


Astrophysical Journal Supplement Series | 2004

FAINT GALAXIES IN DEEP ADVANCED CAMERA FOR SURVEYS OBSERVATIONS

N. Benítez; Holland C. Ford; R. J. Bouwens; Felipe Menanteau; John P. Blakeslee; Caryl Gronwall; G. D. Illingworth; Gerhardt R. Meurer; T. J. Broadhurst; Mark C. Clampin; Marijn Franx; George F. Hartig; D. Magee; Marco Sirianni; D. R. Ardila; Frank Bartko; Robert A. Brown; Christopher J. Burrows; E. S. Cheng; N. J. G. Cross; Paul D. Feldman; David A. Golimowski; L. Infante; Randy A. Kimble; John E. Krist; Michael P. Lesser; Z. Levay; Andre R. Martel; G. K. Miley; Marc Postman

We present the analysis of the faint galaxy population in the Advanced Camera for Surveys (ACS) Early Release Observation fields VV 29 (UGC 10214) and NGC 4676. Here we attempt to thoroughly consider all aspects relevant for faint galaxy counting and photometry, developing methods which are based on public software and that are easily reproducible by other astronomers. Using simulations we determine the best SExtractor parameters for the detection of faint galaxies in deep HST observations, paying special attention to the issue of deblending, which significantly affects the normalization and shape of the number count distribution. We confirm, as claimed by Bernstein, Freedman and Madore (2002), that Kron-like magnitudes, such as the ones generated by SExtractor, can miss more than half of the light of faint galaxies, what dramatically affects the slope of the number counts. We present catalogs for the VV 29 and NGC 4676 fields with photometry in the g,V and I bands. We also show that combining the bayesian software BPZ with superb ACS data and new spectral templates enables us to estimate reliable photometric redshifts for a significant fraction of galaxies with as few as three filters. After correcting for selection effects, we measure slopes of 0.32+- 0.01 for 22 25.5 can be well approximated in all our filters by a passive luminosity evolution model based on the COMBO-17 luminosity function (\alpha=-1.5), with a strong merging rate following the prescription of Glazebrook et al. (1994), \phi^*\propto (1+Qz), with Q=4.We present the analysis of the faint galaxy population in the Advanced Camera for Surveys (ACS) Early Release Observation fields VV 29 (UGC 10214) and NGC 4676. These observations cover a total area of 26.3 arcmin 2 and have depths close to that of the Hubble Deep Fields in the deepest part of the VV 29 image, with 10 � detection limits for point sources of 27.8, 27.6, and 27.2 AB magnitudes in the g F475W , VF606W ,a ndIF814W bands, respectively. Measuring the faint galaxy number count distribution is a difficult task, with different groups arriving at widely varying results even on the same data set. Here we attempt to thoroughly consider all aspects relevant for faint galaxy counting and photometry, developing methods that are based on public software and that are easily reproducible by other astronomers. Using simulations we determine the best SExtractor parameters for the detection of faint galaxies in deep Hubble Space Telescope observations, paying special attention to the issue of deblending, which significantly affects the normalization and shape of the number count distribution. We confirm, as claimed by Bernstein, Freedman, & Madore, that Kron-like magnitudes, such as the ones generated by SExtractor, can miss more than half of the light offaint galaxies, what dramatically affects the slope of the number counts. We show how to correct for this effect, which depends sensitively not only on the characteristics of the observations, but also on the choice of SExtractor parameters. We present catalogs for the VV 29 and NGC 4676 fields with photometry in the F475W, F606W, and F814W bands. We also show that combining the Bayesian software BPZ with superb ACS data and new spectral templates enables us to estimate reliable photometric redshifts for a significant fraction of galaxies with as few as three filters. After correcting for selection effects, we measure slopes of 0:32 � 0:01for 22 25:5 can be well approximated in all our filters by a passive luminosity evolution model based on the COMBO-17 luminosity function (� ¼� 1:5), with a strong merging rate following the prescription of


Astronomical Telescopes and Instrumentation | 1998

Advanced camera for the Hubble Space Telescope

Holland C. Ford; Frank Bartko; Pierre Y. Bely; Tom Broadhurst; Christopher J. Burrows; Edward S. Cheng; Mark Clampin; James H. Crocker; Paul D. Feldman; David A. Golimowski; George F. Hartig; Garth D. Illingworth; Randy A. Kimble; Michael P. Lesser; George H. Miley; Susan G. Neff; Marc Postman; W. B. Sparks; Zlatan I. Tsvetanov; Richard L. White; Pamela C. Sullivan; Carolyn A. Krebs; Douglas B. Leviton; Tom La Jeunesse; William Burmester; Sherri Fike; Rich Johnson; Robert B. Slusher; Paul Volmer; Robert A. Woodruff

The Advanced Camera for the Hubble Space Telescope has three cameras. The first, the Wide Field Camera, will be a high- throughput, wide field, 4096 X 4096 pixel CCD optical and I-band camera that is half-critically sampled at 500 nm. The second, the High Resolution Camera (HRC), is a 1024 X 1024 pixel CCD camera that is critically sampled at 500 nm. The HRC has a 26 inch X 29 inch field of view and 29 percent throughput at 250 nm. The HRC optical path includes a coronagraph that will improve the HST contrast near bright objects by a factor of approximately 10 at 900 nm. The third camera, the solar-blind camera, is a far-UV, pulse-counting array that has a relatively high throughput over a 26 inch X 29 inch field of view. The advanced camera for surveys will increase HSTs capability for surveys and discovery by a factor of approximately 10 at 800 nm.

Collaboration


Dive into the Paul D. Feldman's collaboration.

Top Co-Authors

Avatar

Harold A. Weaver

Johns Hopkins University Applied Physics Laboratory

View shared research outputs
Top Co-Authors

Avatar

Kurt D. Retherford

Southwest Research Institute

View shared research outputs
Top Co-Authors

Avatar

Randy A. Kimble

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar

S. Alan Stern

Southwest Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joel Wm. Parker

Southwest Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David A. Golimowski

Space Telescope Science Institute

View shared research outputs
Top Co-Authors

Avatar

George F. Hartig

Space Telescope Science Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge