Paul F. Bradfield
University of Geneva
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Paul F. Bradfield.
Arteriosclerosis, Thrombosis, and Vascular Biology | 2007
Paul F. Bradfield; Sussan Nourshargh; Michel Aurrand-Lions; Beat A. Imhof
Exploring the role of junctional adhesion molecules (JAMs) has proven to be varied and controversial. The purpose of this review is to discuss the new and exciting roles of these IgSF molecules and how they have evolved to contribute to diverse functions from development to inflammation. In particular, recent research has focused on JAM subfamily members JAM-A, -B, and -C with newly described roles in leukocyte trafficking during inflammation and angiogenesis. However, research on all JAM family members has demonstrated recurring themes with striking similarities in the many diverse processes they are now known to regulate.
Biochemical Society Transactions | 2008
Sarah Garrido-Urbani; Paul F. Bradfield; Boris P.-L. Lee; Beat A. Imhof
Rapid mobilization of leucocytes through endothelial and epithelial barriers is key in immune system reactivity. The underlying mechanisms that regulate these processes have been the basis for many recent studies. Traditionally, leucocyte extravasation had been believed to occur through a paracellular route, which involves localized disruption of endothelial cell junctions. However, more recently, a transcellular route has been described involving the passage through the endothelial cell body. Leucocytes are also able to migrate through epithelium to monitor mucosal tissues and microenvironments. A number of adhesion molecules are known to regulate transmigration of leucocytes through epithelial and endothelial layers. Paracellular and transcellular leucocyte transmigration are regulated by adhesion molecules such as PECAM-1 (platelet-endothelial cell adhesion molecule 1), CD99, VE-cadherin (vascular endothelial cadherin) and JAM (junctional adhesion molecule) proteins. The purpose of this review is to discuss the role of these molecules in leucocyte transmigration and how they contribute to the different mechanisms that regulate leucocyte trafficking.
Journal of Immunology | 2007
Monica Sircar; Paul F. Bradfield; Michel Aurrand-Lions; Richard J. Fish; Pilar Alcaide; Lin Yang; Gail Newton; Deanna J. Lamont; Seema Sehrawat; Tanya N. Mayadas; Tony W. Liang; Charles A. Parkos; Beat A. Imhof; Francis W. Luscinskas
Endothelial cell junctional adhesion molecule (JAM)-C has been proposed to regulate neutrophil migration. In the current study, we used function-blocking mAbs against human JAM-C to determine its role in human leukocyte adhesion and transendothelial cell migration under flow conditions. JAM-C surface expression in HUVEC was uniformly low, and treatment with inflammatory cytokines TNF-α, IL-1β, or LPS did not increase its surface expression as assessed by FACS analysis. By immunofluorescence microscopy, JAM-C staining showed sparse localization to cell-cell junctions on resting or cytokine-activated HUVEC. Surprisingly, staining of detergent-permeabilized HUVEC revealed a large intracellular pool of JAM-C that showed little colocalization with von Willebrand factor. Adhesion studies in an in vitro flow model showed that functional blocking JAM-C mAb alone had no inhibitory effect on polymorphonuclear leukocyte (PMN) adhesion or transmigration, whereas mAb to ICAM-1 significantly reduced transmigration. Interestingly, JAM-C-blocking mAbs synergized with a combination of PECAM-1, ICAM-1, and CD99-blocking mAbs to inhibit PMN transmigration. Overexpression of JAM-C by infection with a lentivirus JAM-C GFP fusion protein did not increase adhesion or extent of transmigration of PMN or evoke a role for JAM-C in transendothelial migration. These data suggest that JAM-C has a minimal role, if any, in PMN transmigration in this model and that ICAM-1 is the preferred endothelial-expressed ligand for PMN β2 integrins during transendothelial migration.
The FASEB Journal | 2009
Marijana Miljkovic-Licina; Philippe Hammel; Sarah Garrido-Urbani; Paul F. Bradfield; Pierre Szepetowski; Beat A. Imhof
On appropriate stimuli, quiescent endothelial cells start to proliferate and form de novo blood vessels through angiogenesis. To further define molecular mechanisms accompanying the activation of endothelial cells during angiogenesis, we identified genes that were differentially regulated during this process using microarray analyses. In this work, we established a regulatory role for Sushi repeat protein X‐linked 2 (Srpx2) in endothelial cell remodeling during angiogenesis. In particular, silencing of Srpx2 using small interfering RNAs (siRNAs) specifically attenuated endothe‐lial cell migration and delayed angiogenic sprout formation. In vivo, Srpx2 expression was detected in de novo formation of blood vessels in angiogenic tissues by in situ mRNA hybridization and immunostaining. Pulldown experiments identified Srpx2 as a ligand for vascular uPAR, a key molecule involved in invasive migration of angiogenic endothelium. Immunostaining revealed coexpression of the Srpx2 and uPAR on vascular endothelium. These findings suggest that Srpx2 regulates endothelial cell migration and tube formation and provides a new target for modulating angiogenesis.—Miljkovic‐Licina, M., Hammel, P., Garrido‐Urbani, S., Bradfield, P. F., Szepetowski, P., Imhof, B. A. Sushi repeat protein X‐linked 2, a novel mediator, of angiogenesis. FASEBJ. 23, 4105‐4116 (2009). www.fasebj.org
Thrombosis and Haemostasis | 2015
Filippo Molica; Sandrine Morel; Merlijn J. Meens; Jean François Denis; Paul F. Bradfield; Silvia Penuela; Anne Zufferey; Hannah Monyer; Beat A. Imhof; Marc Chanson; Dale W. Laird; Pierre Fontana; Brenda R. Kwak
Pannexin1 (Panx1) forms ATP channels that play a critical role in the immune response by reinforcing purinergic signal amplification in the immune synapse. Platelets express Panx1 and given the importance of ATP release in platelets, we investigated Panx1 function in platelet aggregation and the potential impact of genetic polymorphisms on Panx1 channels. We show here that Panx1 forms ATP release channels in human platelets and that inhibiting Panx1 channel function with probenecid, mefloquine or specific (10)Panx1 peptides reduces collagen-induced platelet aggregation but not the response induced by arachidonic acid or ADP. These results were confirmed using Panx1-/- platelets. Natural variations have been described in the human Panx1 gene, which are predicted to induce non-conservative amino acid substitutions in its coding sequence. Healthy subjects homozygous for Panx1-400C, display enhanced platelet reactivity in response to collagen compared with those bearing the Panx1-400A allele. Conversely, the frequency of Panx1-400C homozygotes was increased among cardiovascular patients with hyper-reactive platelets compared with patients with hypo-reactive platelets. Exogenous expression of polymorphic Panx1 channels in a Panx-deficient cell line revealed increased basal and stimulated ATP release from cells transfected with Panx1-400C channels compared with Panx1-400A expressing transfectants. In conclusion, we demonstrate a specific role for Panx1 channels in the signalling pathway leading to collagen-induced platelet aggregation. Our study further identifies for the first time an association between a Panx1-400A>C genetic polymorphism and collagen-induced platelet reactivity. The Panx1-400C variant encodes for a gain-of-function channel that may adversely affect atherothrombosis by specifically enhancing collagen-induced ATP release and platelet aggregation.
PLOS ONE | 2016
Paul F. Bradfield; Arjun Menon; Marijana Miljkovic-Licina; Boris P.-L. Lee; Nicolas Fischer; Richard J. Fish; Brenda R. Kwak; Edward A. Fisher; Beat A. Imhof
Atherosclerosis, caused in part by monocytes in plaques, continues to be a disease that afflicts the modern world. Whilst significant steps have been made in treating this chronic inflammatory disease, questions remain on how to prevent monocyte and macrophage accumulation in atherosclerotic plaques. Junctional Adhesion Molecule C (JAM-C) expressed by vascular endothelium directs monocyte transendothelial migration in a unidirectional manner leading to increased inflammation. Here we show that interfering with JAM-C allows reverse-transendothelial migration of monocyte-derived cells, opening the way back out of the inflamed environment. To study the role of JAM-C in plaque regression we used a mouse model of atherosclerosis, and tested the impact of vascular JAM-C expression levels on monocyte reverse transendothelial migration using human cells. Studies in-vitro under inflammatory conditions revealed that overexpression or gene silencing of JAM-C in human endothelium exposed to flow resulted in higher rates of monocyte reverse-transendothelial migration, similar to antibody blockade. We then transplanted atherosclerotic, plaque-containing aortic arches from hyperlipidemic ApoE-/- mice into wild-type normolipidemic recipient mice. JAM-C blockade in the recipients induced greater emigration of monocyte-derived cells and further diminished the size of atherosclerotic plaques. Our findings have shown that JAM-C forms a one-way vascular barrier for leukocyte transendothelial migration only when present at homeostatic copy numbers. We have also shown that blocking JAM-C can reduce the number of atherogenic monocytes/macrophages in plaques by emigration, providing a novel therapeutic strategy for chronic inflammatory pathologies.
Nature Communications | 2018
Adama Sidibé; Patricia Ropraz; Stephane Jemelin; Yalin Emre; Marine Poittevin; Marc Pocard; Paul F. Bradfield; Beat A. Imhof
Recruitment of circulating monocytes is critical for tumour angiogenesis. However, how human monocyte subpopulations extravasate to tumours is unclear. Here we show mechanisms of extravasation of human CD14dimCD16+ patrolling and CD14+CD16+ intermediate proangiogenic monocytes (HPMo), using human tumour xenograft models and live imaging of transmigration. IFNγ promotes an increase of the chemokine CX3CL1 on vessel lumen, imposing continuous crawling to HPMo and making these monocytes insensitive to chemokines required for their extravasation. Expression of the angiogenic factor VEGF and the inflammatory cytokine TNF by tumour cells enables HPMo extravasation by inducing GATA3-mediated repression of CX3CL1 expression. Recruited HPMo boosts angiogenesis by secreting MMP9 leading to release of matrix-bound VEGF-A, which amplifies the entry of more HPMo into tumours. Uncovering the extravasation cascade of HPMo sets the stage for future tumour therapies.Circulating myeloid cells can leave the vasculature to infiltrate tumours and are thought to contribute to tumour angiogenesis. Here the authors live image monocytes that migrate to xenograft tumours and map an extravasation cascade of human proangiogenic monocytes into the tumour.
Handbook of experimental pharmacology | 2004
Paul F. Bradfield; Beat A. Imhof
Endothelial cells express a diverse and exquisite array of adhesion molecules and cell surface receptors. Adhesion molecules expressed on endothelial cells not only maintain structural integrity of the vasculature, but also mediate more dynamic processes such as the highly regulated movement of leukocytes from free flow into different tissue compartments. Recent studies have focused on the molecular processes that mediate endothelial cell function and their ability to respond rapidly to changes in their immediate microenvironment, as well as maintaining routine cell trafficking through specialist tissue compartments. Adhesion molecules expressed on the endothelium mediate the movement of leukocytes into the underlying extravasculature to mediate a diverse array of functions including immune effector responses, cellular interactions in specialist lymphatic microenvironments and recirculation back into the vasculature. The true diversity and capacity of adhesion molecules capable of being expressed on the endothelium is now beginning to emerge, demonstrating new levels of complexity as specialist subsets of endothelium are characterised that define specific, yet diverse functions. In this chapter, the role of cell adhesion molecules in mediating endothelial cell function is discussed, from how their different physiochemical properties contribute to function, to how specific ligand interactions expressed on leukocyte cell populations contribute to functions ranging from constitutive cell trafficking to inflammation.
Blood | 2007
Paul F. Bradfield; Christoph Scheiermann; Sussan Nourshargh; Christiane Ody; Francis W. Luscinskas; G. E. Rainger; G. B. Nash; Marijana Miljkovic-Licina; Michel Aurrand-Lions; Beat A. Imhof
Cell and Tissue Research | 2014
Sarah Garrido-Urbani; Paul F. Bradfield; Beat A. Imhof