Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paul F. Hessburg is active.

Publication


Featured researches published by Paul F. Hessburg.


Forest Ecology and Management | 2003

An environmental narrative of Inland Northwest United States forests, 1800-2000

Paul F. Hessburg; James K. Agee

Fire was arguably the most important forest and rangeland disturbance process in the Inland Northwest United States for millennia. Prior to the Lewis and Clark expedition, fire regimes ranged from high severity with return intervals of one to five centuries, to low severity with fire-free periods lasting three decades or less. Indoamerican burning contributed to the fire ecology of grasslands and lower and mid-montane dry forests, especially where ponderosa pine was the dominant overstory species, but the extent of this contribution is difficult to quantify. Two centuries of settlement, exploitation, management, and climate variation have transformed the fire regimes, vegetation and fuel patterns, and overall functionality of these forests. We present a narrative that portrays conditions beginning at the first contact of Euro-American settlers with Indoamericans of the region and extending to the present. Due in part to its geographic isolation, the Inland Northwest was among the last regions to be discovered by Euro-Americans. In 200 years the region has undergone fur trapping and trading, sheep, cattle, and horse grazing, timber harvesting, mining, road construction, native grassland conversion to agricultural production, urban and rural area development, fire prevention, and fire suppression. We highlight key changes to forest landscape patterns and processes that occurred under these combined influences, discuss implications of the changes, and progress towards restoring sustainability. An adaptive ecosystem management model has been adopted by public land management agencies to remedy current conditions. Ecosystem management is a relatively new concept that emphasizes the integrity and sustainability of land systems rather than outputs from the land. Adaptive management emphasizes the twin notions that incomplete knowledge and high degrees of risk and uncertainty about earth and climate systems will always limit land and resource planning and management decisions, and that management is chiefly a learning and adapting process. We discuss current issues and future options associated with ecosystem management, including the low likelihood of social consensus concerning desired outcomes, the lack of integrated planning, analysis, and decision support tools, and mismatches between existing land management planning processes, Congressional appropriations, and complex management and restoration problems. Published by Elsevier Science B.V.


Nature | 2014

Learning to coexist with wildfire

Max A. Moritz; Enric Batllori; Ross A. Bradstock; A. Malcolm Gill; John Handmer; Paul F. Hessburg; Justin Leonard; Sarah McCaffrey; Dennis C. Odion; Tania Schoennagel; Alexandra D. Syphard

The impacts of escalating wildfire in many regions — the lives and homes lost, the expense of suppression and the damage to ecosystem services — necessitate a more sustainable coexistence with wildfire. Climate change and continued development on fire-prone landscapes will only compound current problems. Emerging strategies for managing ecosystems and mitigating risks to human communities provide some hope, although greater recognition of their inherent variation and links is crucial. Without a more integrated framework, fire will never operate as a natural ecosystem process, and the impact on society will continue to grow. A more coordinated approach to risk management and land-use planning in these coupled systems is needed.


Ecological Modelling | 2002

Estimating historical range and variation of landscape patch dynamics: limitations of the simulation approach

Robert E. Keane; Russell A. Parsons; Paul F. Hessburg

Abstract Landscape patterns in the northwestern United States are mostly shaped by the interaction of fire and succession, and conversely, vegetation patterns influence fire dynamics and plant colonization processes. Historical landscape pattern dynamics can be used by resource managers to assess current landscape conditions and develop target spatial characteristics for management activities. The historical range and variability (HRV) of landscape pattern can be quantified from simulated chronosequences of landscape vegetation maps and can be used to (1) describe temporal variation in patch statistics, (2) develop limits of acceptable change, and (3) design landscape treatment guidelines for ecosystem management. Although this simulation approach has many advantages, the limitations of this method have not been explored in detail. To demonstrate the advantages and disadvantages of this approach, we performed several simulation experiments using the spatially explicit, multiple pathway model a LANDscape Succession Model (LANDSUM) to quantify the range and variability in six class and landscape pattern metrics for four landscapes in the northwestern United States. First, we applied the model to spatially nested landscapes to evaluate the effect of landscape size on the HRV pattern metrics. Next, we averaged the HRV pattern metrics across maps generated from simulation time spans of 100, 500, and 1000 years and intervals 5, 10, 25 and 50 years to assess optimal output generation parameters. We then altered the elevation data layer to evaluate effect of topography on pattern metrics, and cut various shapes (circle, rectangle, square) from a landscape to examine landscape shape and orientation influences. Then, we altered the input vegetation maps to assess the influence of initial conditions on landscape metrics output. Finally, a sensitivity analysis of input fire probabilities and transition times was performed. Results indicate landscapes should be quite large to realistically simulation fire pattern. Landscape shape, and orientation are critically important to quantifying patch metrics. Simulation output need only be stored every 20–50 years but landscapes should be simulated for long time periods (≥1000 years). All landscapes are unique so conclusions generated here may not be entirely applicable to all western US landscapes.


Forest Ecology and Management | 1997

Predicting late-successional fire refugia pre-dating European settlement in the Wenatchee Mountains

Ann E. Camp; Chad Oliver; Paul F. Hessburg; Richard L. Everett

Abstract Fires occur frequently in dry forests of the Inland West. Fire effects vary across the landscape, reflecting topography, elevation, aspect, slope, soils, and vegetation attributes. Patches minimally affected by successive fires may be thought of as ‘refugia’, islands of older forest in a younger forest matrix. Refugia support species absent within the landscape matrix. Our goal was to predict the occurrence of pre-settlement refugia using physiographic and topographic variables. We evaluated 487 plots across a 47000 ha landscape using three criteria to identify historical fire refugia: different structure from surrounding matrix; different fire regime from surrounding matrix; presence of old individuals of fire-intolerant tree species. Several combinations of aspect, elevation, and topography best predicted refugial presence. Less than 20% of the pre-settlement landscape was identified as historical fire refugia. Refugia were not connected except by younger stands within the matrix. Current management goals of increasing amounts and connectivity of old, refugia-like forests for the benefit of species associated with late-successional habitat increase the risk of insect and pathogen outbreaks and catastrophic wildfires.


Landscape Ecology | 2007

Re-examining fire severity relations in pre-management era mixed conifer forests: inferences from landscape patterns of forest structure

Paul F. Hessburg; R. Brion Salter; Kevin M. James

For some time, ecologists have known that spatial patterns of forest structure reflected disturbance and recovery history, disturbance severity and underlying influences of environmental gradients. In spite of this awareness, historical forest structure has been little used to expand knowledge of historical fire severity. Here, we used forest structure to predict pre-management era fire severity across three biogeoclimatic zones in eastern Washington State, USA, that contained extensive mixed conifer forests. We randomly selected 10% of the subwatersheds in each zone, delineated patch boundaries, and photo-interpreted the vegetation attributes of every patch in each subwatershed using the oldest available stereo-aerial photography. We statistically reconstructed the vegetation of any patch showing evidence of early selective harvesting, and then classified them as to their most recent fire severity. Classification used published percent canopy mortality definitions and a dichotomized procedure that considered the overstory and understory canopy cover and size class attributes of a patch, and the fire tolerance of its cover type. Mixed severity fires were most prevalent, regardless of forest type. The structure of mixed conifer patches, in particular, was formed by a mix of disturbance severities. In moist mixed conifer, stand replacement effects were more widespread in patches than surface fire effects, while in dry mixed conifer, surface fire effects were more widespread by nearly 2:1. However, evidence for low severity fires as the primary influence, or of abundant old park-like patches, was lacking in both the dry and moist mixed conifer forests. The relatively low abundance of old, park-like or similar forest patches, high abundance of young and intermediate-aged patches, and widespread evidence of partial stand and stand-replacing fire suggested that variable fire severity and non-equilibrium patch dynamics were primarily at work.


Forest Ecology and Management | 2000

Recent changes (1930s–1990s) in spatial patterns of interior northwest forests, USA

Paul F. Hessburg; B.G. Smith; R.B. Salter; Roger D. Ottmar; Ernesto Alvarado

Abstract We characterized recent historical and current vegetation composition and structure of a representative sample of subwatersheds on all ownerships within the interior Columbia River basin and portions of the Klamath and Great Basins. For each selected subwatershed, we constructed historical and current vegetation maps from 1932 to 1966 and 1981 to 1993 aerial photos, respectively. Using the raw vegetation attributes, we classified and attributed cover types, structural classes, and potential vegetation types to individual patches within subwatersheds. We characterized change in vegetation spatial patterns using a suite of class and landscape metrics, and a spatial pattern analysis program. We then translated change in vegetation patterns to change in patterns of vulnerability to wildfires, smoke production, and 21 major forest pathogen and insect disturbances. Results of change analyses were reported for province-scale ecological reporting units (ERUs). Here, we highlight significant findings and discuss management implications. Twentieth century management activities significantly altered spatial patterns of physiognomies, cover types and structural conditions, and vulnerabilities to fire, insect, and pathogen disturbances. Forest land cover expanded in several ERUs, and woodland area expanded in most. Of all physiognomic conditions, shrubland area declined most due to cropland expansion, conversion to semi- and non-native herblands, and expansion of forests and woodlands. Shifts from early to late seral conifer species were evident in forests of most ERUs; patch sizes of forest cover types are now smaller, and current land cover is more fragmented. Landscape area in old multistory, old single story, and stand initiation forest structures declined with compensating increases in area and connectivity of dense, multilayered, intermediate forest structures. Patches with medium and large trees, regardless of their structural affiliation are currently less abundant on the landscape. Finally, basin forests are now dominated by shade-tolerant conifers, and exhibit elevated fuel loads and severe fire behavior attributes indicating expanded future roles of certain defoliators, bark beetles, root diseases, and stand replacement fires. Although well intentioned, 20th-century management practices did not account for landscape-scale patterns of living and dead vegetation that enable forest ecosystems to maintain their structure and organization through time, or for the disturbances that create and maintain them. Improved understanding of change in vegetation spatial patterns, causative factors, and links with disturbance processes will assist managers and policymakers in making informed decisions about how to address important ecosystem health issues.


Ecological Applications | 1999

DETECTING CHANGE IN FOREST SPATIAL PATTERNS FROM REFERENCE CONDITIONS

Paul F. Hessburg; Bradley G. Smith; R. Brion Salter

Timber harvest, fire suppression, road construction, and domestic livestock grazing have transformed spatial patterns of Interior Northwest forests. As a consequence, parameters of current disturbance regimes differ radically from historical regimes; present-day wildlife habitat distributions differ from historical distributions; and long-term survival of some native terrestrial species is uncertain. Public land managers are under increasing scientific and social pressure to mold existing forest spatial patterns to reflect those resulting from natural disturbance regimes and patterns of biophysical environments. However, knowledge of the characteristics of natural spatial patterns is unavailable. Using a dichotomized ordination procedure, we grouped the 343 forested subwatersheds (mean area, 8000 ha) on the eastern slope of the Cascade Mountains in Washington State into ecological subregions by similarity of area in potential vegetation and climate attributes. We built spatially continuous “historical” (1938–1956) and “current” (1985–1993) vegetation maps for 48 randomly selected subwatersheds from aerial photo interpretations. From remotely sensed attributes, we classified cover types, structural classes, and potential vegetation types and attributed them to individual patches. We then estimated a reference variation (RV) in spatial patterns of patch types (cover type and structural class), by subwatersheds and five forested ecological subregions, using the 48 historical vegetation maps stratified by subregion and a spatial pattern analysis program. Finally, we compared the current pattern of an example subwatershed (MET_11) with the RV estimates of its corresponding subregion to illustrate how reference conditions can be used to evaluate the importance of spatial pattern change. By evaluating pattern changes in light of RV estimates (nominally, the sample median 80% range of a metric) and the full range of class and landscape metrics, we could identify both current and historical conditions of MET_11 that fell outside the RV. This approach gives land managers a tool to compare characteristics of present-day managed landscapes with reference conditions to reveal significant pattern departures, as well as to identify specific pattern characteristics that might be modified through management. It also provides a means to identify “outlier” conditions, relative to subregion RV estimates, that may occasionally be the object of pattern restoration activities.


Forest Ecology and Management | 2003

Fire and aquatic ecosystems of the Western USA: current knowledge and key questions.

Peter A. Bisson; Bruce E. Rieman; Charlie Luce; Paul F. Hessburg; Danny C. Lee; Jeffrey L. Kershner; Gordon H. Reeves; Robert E. Gresswell

Understanding of the effects of wildland fire and fire management on aquatic and riparian ecosystems is an evolving field, with many questions still to be resolved. Limitations of current knowledge, and the certainty that fire management will continue, underscore the need to summarize available information. Integrating fire and fuels management with aquatic ecosystem conservation begins with recognizing that terrestrial and aquatic ecosystems are linked and dynamic, and that fire can play a critical role in maintaining aquatic ecological diversity. To protect aquatic ecosystems we argue that it will be important to: (1) accommodate fire-related and other ecological processes that maintain aquatic habitats and biodiversity, and not simply control fires or fuels; (2) prioritize projects according to risks and opportunities for fire control and the protection of aquatic ecosystems; and (3) develop new consistency in the management and regulatory process. Ultimately, all natural resource management is uncertain; the role of science is to apply experimental design and hypothesis testing to management applications that affect fire and aquatic ecosystems. Policy-makers and the public will benefit from an expanded appreciation of fire ecology that enables them to implement watershed management projects as experiments with hypothesized outcomes, adequate controls, and replication.


Landscape Ecology | 2015

Restoring fire-prone Inland Pacific landscapes: seven core principles

Paul F. Hessburg; Derek J. Churchill; Andrew J. Larson; Ryan D. Haugo; Carol Miller; Thomas A. Spies; Malcolm P. North; Nicholas A. Povak; R. Travis Belote; Peter H. Singleton; William L. Gaines; Robert E. Keane; Gregory H. Aplet; Scott L. Stephens; Penelope Morgan; Peter A. Bisson; Bruce E. Rieman; R. Brion Salter; Gordon H. Reeves

ContextMore than a century of forest and fire management of Inland Pacific landscapes has transformed their successional and disturbance dynamics. Regional connectivity of many terrestrial and aquatic habitats is fragmented, flows of some ecological and physical processes have been altered in space and time, and the frequency, size and intensity of many disturbances that configure these habitats have been altered. Current efforts to address these impacts yield a small footprint in comparison to wildfires and insect outbreaks. Moreover, many current projects emphasize thinning and fuels reduction within individual forest stands, while overlooking large-scale habitat connectivity and disturbance flow issues.MethodsWe provide a framework for landscape restoration, offering seven principles. We discuss their implication for management, and illustrate their application with examples.ResultsHistorical forests were spatially heterogeneous at multiple scales. Heterogeneity was the result of variability and interactions among native ecological patterns and processes, including successional and disturbance processes regulated by climatic and topographic drivers. Native flora and fauna were adapted to these conditions, which conferred a measure of resilience to variability in climate and recurrent contagious disturbances.ConclusionsTo restore key characteristics of this resilience to current landscapes, planning and management are needed at ecoregion, local landscape, successional patch, and tree neighborhood scales. Restoration that works effectively across ownerships and allocations will require active thinking about landscapes as socio-ecological systems that provide services to people within the finite capacities of ecosystems. We focus attention on landscape-level prescriptions as foundational to restoration planning and execution.


Archive | 2011

Native Fire Regimes and Landscape Resilience

Max A. Moritz; Paul F. Hessburg; Nicholas A. Povak

First introduced by Holling (1973), the term “resilience” has been used widely in the ecological literature, but it is not always defined and is rarely quantified. Holling suggested that ecological resilience is the amount of disturbance that an ecosystem could withstand without changing self-organized processes and structures. His description suggests that resilience may be: (1) represented by an observable set of properties; (2) defined by measures of degree; and (3) related to system states and their (in)tolerance to reshaping, and that some properties of resilience may be quantifiable. We also see the idea of fire resilience in the literature (e.g., MacGillivray and Grime 1995; He and Mladenoff 1999; Diaz-Delgado et al. 2002; Brown et al. 2004; Pausas et al. 2004), but this term has different meanings in diverse contexts.

Collaboration


Dive into the Paul F. Hessburg's collaboration.

Top Co-Authors

Avatar

Keith M. Reynolds

United States Forest Service

View shared research outputs
Top Co-Authors

Avatar

R. Brion Salter

United States Forest Service

View shared research outputs
Top Co-Authors

Avatar

Nicholas A. Povak

United States Forest Service

View shared research outputs
Top Co-Authors

Avatar

Robert E. Keane

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Thomas A. Spies

United States Forest Service

View shared research outputs
Top Co-Authors

Avatar

Bruce E. Rieman

United States Forest Service

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gordon H. Reeves

United States Forest Service

View shared research outputs
Top Co-Authors

Avatar

John F. Lehmkuhl

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Danny C. Lee

United States Forest Service

View shared research outputs
Researchain Logo
Decentralizing Knowledge