Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paul F. O'Reilly is active.

Publication


Featured researches published by Paul F. O'Reilly.


WOS | 2013

Common genetic determinants of vitamin D insufficiency: a genome-wide association study

Thomas J. Wang; Feng Zhang; J. Brent Richards; Bryan Kestenbaum; Joyce B. J. van Meurs; Diane J. Berry; Douglas P. Kiel; Elizabeth A. Streeten; Claes Ohlsson; Daniel L. Koller; Leena Peltonen; Jason D. Cooper; Paul F. O'Reilly; Denise K. Houston; Nicole L. Glazer; Liesbeth Vandenput; Munro Peacock; J. Shi; Fernando Rivadeneira; Mark McCarthy; Pouta Anneli; Ian H. de Boer; Massimo Mangino; Bernet Kato; Deborah J. Smyth; Sarah L. Booth; Paul F. Jacques; Greg Burke; Mark O. Goodarzi; Ching-Lung Cheung

BACKGROUND Vitamin D is crucial for maintenance of musculoskeletal health, and might also have a role in extraskeletal tissues. Determinants of circulating 25-hydroxyvitamin D concentrations include sun exposure and diet, but high heritability suggests that genetic factors could also play a part. We aimed to identify common genetic variants affecting vitamin D concentrations and risk of insufficiency. METHODS We undertook a genome-wide association study of 25-hydroxyvitamin D concentrations in 33 996 individuals of European descent from 15 cohorts. Five epidemiological cohorts were designated as discovery cohorts (n=16 125), five as in-silico replication cohorts (n=9367), and five as de-novo replication cohorts (n=8504). 25-hydroxyvitamin D concentrations were measured by radioimmunoassay, chemiluminescent assay, ELISA, or mass spectrometry. Vitamin D insufficiency was defined as concentrations lower than 75 nmol/L or 50 nmol/L. We combined results of genome-wide analyses across cohorts using Z-score-weighted meta-analysis. Genotype scores were constructed for confirmed variants. FINDINGS Variants at three loci reached genome-wide significance in discovery cohorts for association with 25-hydroxyvitamin D concentrations, and were confirmed in replication cohorts: 4p12 (overall p=1.9x10(-109) for rs2282679, in GC); 11q12 (p=2.1x10(-27) for rs12785878, near DHCR7); and 11p15 (p=3.3x10(-20) for rs10741657, near CYP2R1). Variants at an additional locus (20q13, CYP24A1) were genome-wide significant in the pooled sample (p=6.0x10(-10) for rs6013897). Participants with a genotype score (combining the three confirmed variants) in the highest quartile were at increased risk of having 25-hydroxyvitamin D concentrations lower than 75 nmol/L (OR 2.47, 95% CI 2.20-2.78, p=2.3x10(-48)) or lower than 50 nmol/L (1.92, 1.70-2.16, p=1.0x10(-26)) compared with those in the lowest quartile. INTERPRETATION Variants near genes involved in cholesterol synthesis, hydroxylation, and vitamin D transport affect vitamin D status. Genetic variation at these loci identifies individuals who have substantially raised risk of vitamin D insufficiency. FUNDING Full funding sources listed at end of paper (see Acknowledgments).


PLOS ONE | 2012

MultiPhen: joint model of multiple phenotypes can increase discovery in GWAS.

Paul F. O'Reilly; Clive J. Hoggart; Yotsawat Pomyen; Federico C. F. Calboli; Paul Elliott; Marjo-Riitta Järvelin; Lachlan Coin

The genome-wide association study (GWAS) approach has discovered hundreds of genetic variants associated with diseases and quantitative traits. However, despite clinical overlap and statistical correlation between many phenotypes, GWAS are generally performed one-phenotype-at-a-time. Here we compare the performance of modelling multiple phenotypes jointly with that of the standard univariate approach. We introduce a new method and software, MultiPhen, that models multiple phenotypes simultaneously in a fast and interpretable way. By performing ordinal regression, MultiPhen tests the linear combination of phenotypes most associated with the genotypes at each SNP, and thus potentially captures effects hidden to single phenotype GWAS. We demonstrate via simulation that this approach provides a dramatic increase in power in many scenarios. There is a boost in power for variants that affect multiple phenotypes and for those that affect only one phenotype. While other multivariate methods have similar power gains, we describe several benefits of MultiPhen over these. In particular, we demonstrate that other multivariate methods that assume the genotypes are normally distributed, such as canonical correlation analysis (CCA) and MANOVA, can have highly inflated type-1 error rates when testing case-control or non-normal continuous phenotypes, while MultiPhen produces no such inflation. To test the performance of MultiPhen on real data we applied it to lipid traits in the Northern Finland Birth Cohort 1966 (NFBC1966). In these data MultiPhen discovers 21% more independent SNPs with known associations than the standard univariate GWAS approach, while applying MultiPhen in addition to the standard approach provides 37% increased discovery. The most associated linear combinations of the lipids estimated by MultiPhen at the leading SNPs accurately reflect the Friedewald Formula, suggesting that MultiPhen could be used to refine the definition of existing phenotypes or uncover novel heritable phenotypes.


Diabetes | 2011

A Bivariate Genome-Wide Approach to Metabolic Syndrome: STAMPEED Consortium

Aldi T. Kraja; Dhananjay Vaidya; James S. Pankow; Mark O. Goodarzi; Themistocles L. Assimes; Iftikhar J. Kullo; Ulla Sovio; Rasika A. Mathias; Yan V. Sun; Nora Franceschini; Devin Absher; Guo Li; Qunyuan Zhang; Mary F. Feitosa; Nicole L. Glazer; Talin Haritunians; Anna Liisa Hartikainen; Joshua W. Knowles; Kari E. North; Carlos Iribarren; Brian G. Kral; Lisa R. Yanek; Paul F. O'Reilly; Mark McCarthy; David Couper; Aravinda Chakravarti; Bruce M. Psaty; Lewis C. Becker; Michael A. Province; Eric Boerwinkle

OBJECTIVE The metabolic syndrome (MetS) is defined as concomitant disorders of lipid and glucose metabolism, central obesity, and high blood pressure, with an increased risk of type 2 diabetes and cardiovascular disease. This study tests whether common genetic variants with pleiotropic effects account for some of the correlated architecture among five metabolic phenotypes that define MetS. RESEARCH DESIGN AND METHODS Seven studies of the STAMPEED consortium, comprising 22,161 participants of European ancestry, underwent genome-wide association analyses of metabolic traits using a panel of ∼2.5 million imputed single nucleotide polymorphisms (SNPs). Phenotypes were defined by the National Cholesterol Education Program (NCEP) criteria for MetS in pairwise combinations. Individuals exceeding the NCEP thresholds for both traits of a pair were considered affected. RESULTS Twenty-nine common variants were associated with MetS or a pair of traits. Variants in the genes LPL, CETP, APOA5 (and its cluster), GCKR (and its cluster), LIPC, TRIB1, LOC100128354/MTNR1B, ABCB11, and LOC100129150 were further tested for their association with individual qualitative and quantitative traits. None of the 16 top SNPs (one per gene) associated simultaneously with more than two individual traits. Of them 11 variants showed nominal associations with MetS per se. The effects of 16 top SNPs on the quantitative traits were relatively small, together explaining from ∼9% of the variance in triglycerides, 5.8% of high-density lipoprotein cholesterol, 3.6% of fasting glucose, and 1.4% of systolic blood pressure. CONCLUSIONS Qualitative and quantitative pleiotropic tests on pairs of traits indicate that a small portion of the covariation in these traits can be explained by the reported common genetic variants.


PLOS Genetics | 2009

Genetic Determinants of Height Growth Assessed Longitudinally from Infancy to Adulthood in the Northern Finland Birth Cohort 1966

Ulla Sovio; Amanda J. Bennett; Iona Y. Millwood; John Molitor; Paul F. O'Reilly; Nicholas J. Timpson; Marika Kaakinen; Jaana Laitinen; Jari Haukka; Demetris Pillas; Ioanna Tzoulaki; Jassy Molitor; Clive J. Hoggart; Lachlan Coin; Anneli Pouta; Anna-Liisa Hartikainen; Nelson B. Freimer; Elisabeth Widen; Leena Peltonen; Paul Elliott; Mark McCarthy; Marjo-Riitta Järvelin

Recent genome-wide association (GWA) studies have identified dozens of common variants associated with adult height. However, it is unknown how these variants influence height growth during childhood. We derived peak height velocity in infancy (PHV1) and puberty (PHV2) and timing of pubertal height growth spurt from parametric growth curves fitted to longitudinal height growth data to test their association with known height variants. The study consisted of N = 3,538 singletons from the prospective Northern Finland Birth Cohort 1966 with genotype data and frequent height measurements (on average 20 measurements per person) from 0–20 years. Twenty-six of the 48 variants tested associated with adult height (p<0.05, adjusted for sex and principal components) in this sample, all in the same direction as in previous GWA scans. Seven SNPs in or near the genes HHIP, DLEU7, UQCC, SF3B4/SV2A, LCORL, and HIST1H1D associated with PHV1 and five SNPs in or near SOCS2, SF3B4/SV2A, C17orf67, CABLES1, and DOT1L with PHV2 (p<0.05). We formally tested variants for interaction with age (infancy versus puberty) and found biologically meaningful evidence for an age-dependent effect for the SNP in SOCS2 (p = 0.0030) and for the SNP in HHIP (p = 0.045). We did not have similar prior evidence for the association between height variants and timing of pubertal height growth spurt as we had for PHVs, and none of the associations were statistically significant after correction for multiple testing. The fact that in this sample, less than half of the variants associated with adult height had a measurable effect on PHV1 or PHV2 is likely to reflect limited power to detect these associations in this dataset. Our study is the first genetic association analysis on longitudinal height growth in a prospective cohort from birth to adulthood and gives grounding for future research on the genetic regulation of human height during different periods of growth.


Circulation | 2013

Long-term Leisure-time Physical Activity and Serum Metabolome

Urho M. Kujala; Ville-Petteri Mäkinen; Ilkka Heinonen; Pasi Soininen; Antti J. Kangas; Tuija Leskinen; Paavo Rahkila; Peter Würtz; Vuokko Kovanen; Sulin Cheng; Sarianna Sipilä; Mirja Hirvensalo; Risto Telama; Tuija Tammelin; Markku J. Savolainen; Anneli Pouta; Paul F. O'Reilly; Pekka Mäntyselkä; Jorma Viikari; Mika Kähönen; Terho Lehtimäki; Paul Elliott; Mauno Vanhala; Olli T. Raitakari; Marjo-Riitta Järvelin; Jaakko Kaprio; Heikki Kainulainen; Mika Ala-Korpela

Background— Long-term physical inactivity seems to cause many health problems. We studied whether persistent physical activity compared with inactivity has a global effect on serum metabolome toward reduced cardiometabolic disease risk. Methods and Results— Sixteen same-sex twin pairs (mean age, 60 years) were selected from a cohort of twin pairs on the basis of their >30-year discordance for physical activity. Persistently (≥5 years) active and inactive groups in 3 population-based cohorts (mean ages, 31–52 years) were also studied (1037 age- and sex-matched pairs). Serum metabolome was quantified by nuclear magnetic resonance spectroscopy. We used permutation analysis to estimate the significance of the multivariate effect combined across all metabolic measures; univariate effects were estimated by paired testing in twins and in matched pairs in the cohorts, and by meta-analysis over all substudies. Persistent physical activity was associated with the multivariate metabolic profile in the twins (P=0.003), and a similar pattern was observed in all 3 population cohorts with differing mean ages. Isoleucine, &agr;1-acid glycoprotein, and glucose were lower in the physically active than in the inactive individuals (P<0.001 in meta-analysis); serum fatty acid composition was shifted toward a less saturated profile; and lipoprotein subclasses were shifted toward lower very-low-density lipoprotein (P<0.001) and higher large and very large high-density lipoprotein (P<0.001) particle concentrations. The findings persisted after adjustment for body mass index. Conclusions— The numerous differences found between persistently physically active and inactive individuals in the circulating metabolome together indicate better metabolic health in the physically active than in inactive individuals.


Nature Genetics | 2017

Genome-wide association analysis identifies novel blood pressure loci and offers biological insights into cardiovascular risk.

Helen R. Warren; Evangelos Evangelou; Claudia P. Cabrera; He Gao; Meixia Ren; Borbala Mifsud; Ioanna Ntalla; Praveen Surendran; Chunyu Liu; James P. Cook; Aldi T. Kraja; Fotios Drenos; Marie Loh; Niek Verweij; Jonathan Marten; Ibrahim Karaman; Marcelo Segura Lepe; Paul F. O'Reilly; Joanne Knight; Harold Snieder; Norihiro Kato; Jiang He; E. Shyong Tai; M. Abdullah Said; David J. Porteous; Maris Alver; Neil Poulter; Martin Farrall; Ron T. Gansevoort; Sandosh Padmanabhan

Elevated blood pressure is the leading heritable risk factor for cardiovascular disease worldwide. We report genetic association of blood pressure (systolic, diastolic, pulse pressure) among UK Biobank participants of European ancestry with independent replication in other cohorts, and robust validation of 107 independent loci. We also identify new independent variants at 11 previously reported blood pressure loci. In combination with results from a range of in silico functional analyses and wet bench experiments, our findings highlight new biological pathways for blood pressure regulation enriched for genes expressed in vascular tissues and identify potential therapeutic targets for hypertension. Results from genetic risk score models raise the possibility of a precision medicine approach through early lifestyle intervention to offset the impact of blood pressure–raising genetic variants on future cardiovascular disease risk.


BMC Bioinformatics | 2008

Fregene: simulation of realistic sequence-level data in populations and ascertained samples.

Marc Chadeau-Hyam; Clive J. Hoggart; Paul F. O'Reilly; John C. Whittaker; Maria De Iorio; David J. Balding

BackgroundFREGENE simulates sequence-level data over large genomic regions in large populations. Because, unlike coalescent simulators, it works forwards through time, it allows complex scenarios of selection, demography, and recombination to be modelled simultaneously. Detailed tracking of sites under selection is implemented in FREGENE and provides the opportunity to test theoretical predictions and gain new insights into mechanisms of selection. We describe here main functionalities of both FREGENE and SAMPLE, a companion program that can replicate association study datasets.ResultsWe report detailed analyses of six large simulated datasets that we have made publicly available. Three demographic scenarios are modelled: one panmictic, one substructured with migration, and one complex scenario that mimics the principle features of genetic variation in major worldwide human populations. For each scenario there is one neutral simulation, and one with a complex pattern of selection.ConclusionFREGENE and the simulated datasets will be valuable for assessing the validity of models for selection, demography and population genetic parameters, as well as the efficacy of association studies. Its principle advantages are modelling flexibility and computational efficiency. It is open source and object-oriented. As such, it can be customised and the range of models extended.


PLOS ONE | 2014

The South Asian genome.

John Chambers; James Abbott; Weihua Zhang; Ernest Turro; William R. Scott; Sian-Tsung Tan; Uzma Afzal; Saima Afaq; Marie Loh; Benjamin Lehne; Paul F. O'Reilly; Kyle J. Gaulton; Richard D. Pearson; Xinzhong Li; Anita Lavery; Jana Vandrovcova; Mark N. Wass; Kathryn Miller; Joban Sehmi; Laticia Oozageer; Ishminder K. Kooner; Abtehale Al-Hussaini; Rebecca Mills; Jagvir Grewal; Vasileios F. Panoulas; Alexandra M. Lewin; Korrinne Northwood; Gurpreet S. Wander; Frank Geoghegan; Yingrui Li

The genetic sequence variation of people from the Indian subcontinent who comprise one-quarter of the worlds population, is not well described. We carried out whole genome sequencing of 168 South Asians, along with whole-exome sequencing of 147 South Asians to provide deeper characterisation of coding regions. We identify 12,962,155 autosomal sequence variants, including 2,946,861 new SNPs and 312,738 novel indels. This catalogue of SNPs and indels amongst South Asians provides the first comprehensive map of genetic variation in this major human population, and reveals evidence for selective pressures on genes involved in skin biology, metabolism, infection and immunity. Our results will accelerate the search for the genetic variants underlying susceptibility to disorders such as type-2 diabetes and cardiovascular disease which are highly prevalent amongst South Asians.


Human Molecular Genetics | 2012

Detailed metabolic and genetic characterization reveals new associations for 30 known lipid loci

Taru Tukiainen; Johannes Kettunen; Antti J. Kangas; Leo-Pekka Lyytikäinen; Pasi Soininen; Antti-Pekka Sarin; Emmi Tikkanen; Paul F. O'Reilly; Markku J. Savolainen; Kimmo Kaski; Anneli Pouta; Antti Jula; Terho Lehtimäki; Mika Kähönen; Jorma Viikari; Marja-Riitta Taskinen; Matti Jauhiainen; Johan G. Eriksson; Olli T. Raitakari; Veikko Salomaa; Marjo-Riitta Järvelin; Markus Perola; Aarno Palotie; Mika Ala-Korpela; Samuli Ripatti

Almost 100 genetic loci are known to affect serum cholesterol and triglyceride levels. For many of these loci, the biological function and causal variants remain unknown. We performed an association analysis of the reported 95 lipid loci against 216 metabolite measures, including 95 measurements on lipids and lipoprotein subclasses, obtained via serum nuclear magnetic resonance metabolomics and four enzymatic lipid traits in 8330 individuals from Finland. The genetic variation in the loci was investigated using a dense set of 440 807 directly genotyped and imputed variants around the previously identified lead single nucleotide polymorphisms (SNPs). For 30 of the 95 loci, we identified new metabolic or genetic associations (P < 5 × 10(-8)). In the majority of the loci, the strongest association was to a more specific metabolite measure than the enzymatic lipids. In four loci, the smallest high-density lipoprotein measures showed effects opposite to the larger ones, and 14 loci had associations beyond the individual lipoprotein measures. In 27 loci, we identified SNPs with a stronger association than the previously reported markers and 12 loci harboured multiple, statistically independent variants. Our data show considerable diversity in association patterns between the loci originally identified through associations with enzymatic lipid measures and reveal association profiles of far greater detail than from routine clinical lipid measures. Additionally, a dense marker set and a homogeneous population allow for detailed characterization of the genetic association signals to a resolution exceeding that achieved so far. Further understanding of the rich variability in genetic effects on metabolites provides insights into the biological processes modifying lipid levels.


Molecular Psychiatry | 2016

Phenome-wide analysis of genome-wide polygenic scores

Eva Krapohl; Jack Euesden; Delilah Zabaneh; J-b Pingault; S von Stumm; Philip S. Dale; Gerome Breen; Paul F. O'Reilly; Robert Plomin

Genome-wide polygenic scores (GPS), which aggregate the effects of thousands of DNA variants from genome-wide association studies (GWAS), have the potential to make genetic predictions for individuals. We conducted a systematic investigation of associations between GPS and many behavioral traits, the behavioral phenome. For 3152 unrelated 16-year-old individuals representative of the United Kingdom, we created 13 GPS from the largest GWAS for psychiatric disorders (for example, schizophrenia, depression and dementia) and cognitive traits (for example, intelligence, educational attainment and intracranial volume). The behavioral phenome included 50 traits from the domains of psychopathology, personality, cognitive abilities and educational achievement. We examined phenome-wide profiles of associations for the entire distribution of each GPS and for the extremes of the GPS distributions. The cognitive GPS yielded stronger predictive power than the psychiatric GPS in our UK-representative sample of adolescents. For example, education GPS explained variation in adolescents’ behavior problems (~0.6%) and in educational achievement (~2%) but psychiatric GPS were associated with neither. Despite the modest effect sizes of current GPS, quantile analyses illustrate the ability to stratify individuals by GPS and opportunities for research. For example, the highest and lowest septiles for the education GPS yielded a 0.5 s.d. difference in mean math grade and a 0.25 s.d. difference in mean behavior problems. We discuss the usefulness and limitations of GPS based on adult GWAS to predict genetic propensities earlier in development.

Collaboration


Dive into the Paul F. O'Reilly's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lachlan Coin

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul Elliott

Imperial College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anneli Pouta

National Institute for Health and Welfare

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge