Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paul Franken is active.

Publication


Featured researches published by Paul Franken.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Homer1a is a core brain molecular correlate of sleep loss

Stéphanie Maret; Stéphane Dorsaz; Laure Gurcel; Sylvain Pradervand; Brice Petit; Corinne Pfister; Otto Hagenbüchle; Bruce F. O'Hara; Paul Franken; Mehdi Tafti

Sleep is regulated by a homeostatic process that determines its need and by a circadian process that determines its timing. By using sleep deprivation and transcriptome profiling in inbred mouse strains, we show that genetic background affects susceptibility to sleep loss at the transcriptional level in a tissue-dependent manner. In the brain, Homer1a expression best reflects the response to sleep loss. Time-course gene expression analysis suggests that 2,032 brain transcripts are under circadian control. However, only 391 remain rhythmic when mice are sleep-deprived at four time points around the clock, suggesting that most diurnal changes in gene transcription are, in fact, sleep–wake-dependent. By generating a transgenic mouse line, we show that in Homer1-expressing cells specifically, apart from Homer1a, three other activity-induced genes (Ptgs2, Jph3, and Nptx2) are overexpressed after sleep loss. All four genes play a role in recovery from glutamate-induced neuronal hyperactivity. The consistent activation of Homer1a suggests a role for sleep in intracellular calcium homeostasis for protecting and recovering from the neuronal activation imposed by wakefulness.


BMC Neuroscience | 2002

A role for cryptochromes in sleep regulation

Jonathan P. Wisor; Bruce F. O'Hara; Akira Terao; Chris P Selby; Thomas S. Kilduff; Aziz Sancar; Dale M. Edgar; Paul Franken

BackgroundThe cryptochrome 1 and 2 genes (cry1 and cry2) are necessary for the generation of circadian rhythms, as mice lacking both of these genes (cry1,2-/-) lack circadian rhythms. We studied sleep in cry1,2-/- mice under baseline conditions as well as under conditions of constant darkness and enforced wakefulness to determine whether cryptochromes influence sleep regulatory processes.ResultsUnder all three conditions, cry1,2-/- mice exhibit the hallmarks of high non-REM sleep (NREMS) drive (i.e., increases in NREMS time, NREMS consolidation, and EEG delta power during NREMS). This unexpected phenotype was associated with elevated brain mRNA levels of period 1 and 2 (per1,2), and albumin d-binding protein (dbp), which are known to be transcriptionally inhibited by CRY1,2. To further examine the relationship between circadian genes and sleep homeostasis, we examined wild type mice and rats following sleep deprivation and found increased levels of per1,2 mRNA and decreased levels of dbp mRNA specifically in the cerebral cortex; these changes subsided with recovery sleep. The expression of per3, cry1,2, clock, npas2, bmal1, and casein-kinase-1ε did not change with sleep deprivation.ConclusionsThese results indicate that mice lacking cryptochromes are not simply a genetic model of circadian arrhythmicity in rodents and functionally implicate cryptochromes in the homeostatic regulation of sleep.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 1998

Genetic variation in EEG activity during sleep in inbred mice

Paul Franken; Alain Malafosse; Mehdi Tafti

The genetic variation in spontaneous rhythmic electroencephalographic (EEG) activity was assessed by the quantitative analysis of the EEG in six inbred mice strains. Mean spectral EEG profiles (0-25 Hz) over 24 h were obtained for paradoxical sleep (PS), slow-wave sleep (SWS), and wakefulness. A highly significant genotype-specific variation was found for theta peak frequency during both PS and SWS, which strongly suggests the presence of a gene with a major effect. The strain distribution of theta peak frequency during exploratory behavior differed from that during sleep. In SWS, the relative contributions of delta (1-4 Hz) and sigma (11-15) power to the EEG varied with genotype and power in both frequency bands was negatively correlated. In addition, the EEG dynamics at state transitions were analyzed with a 4-s resolution. The onset of PS, but not that of wakefulness, was preceded by a pronounced peak in high-frequency (>11 Hz) power. These findings are discussed in terms of the neurophysiological mechanisms underlying rhythm generation and their control and modulation by the brain stem reticular-activating system.


European Journal of Neuroscience | 2009

Circadian clock genes and sleep homeostasis

Paul Franken; Derk-Jan Dijk

Circadian and sleep‐homeostatic processes both contribute to sleep timing and sleep structure. Elimination of circadian rhythms through lesions of the suprachiasmatic nuclei (SCN), the master circadian pacemaker, leads to fragmentation of wakefulness and sleep but does not eliminate the homeostatic response to sleep loss as indexed by the increase in EEG delta power. In humans, EEG delta power declines during sleep episodes nearly independently of circadian phase. Such observations have contributed to the prevailing notion that circadian and homeostatic processes are separate but recent data imply that this segregation may not extend to the molecular level. Here we summarize the criteria and evidence for a role for clock genes in sleep homeostasis. Studies in mice with targeted disruption for core circadian clock genes have revealed alterations in circadian rhythmicity as well as changes in sleep duration, sleep structure and EEG delta power. Clock‐gene expression in brain areas outside the SCN, in particular the cerebral cortex, depends to a large extent on prior sleep–wake history. Evidence for effects of clock genes on sleep homeostasis has also been obtained in Drosophila and humans, pointing to a phylogenetically preserved pathway. These findings suggest that, while within the SCN clock genes are utilized to set internal time‐of‐day, in the forebrain the same feedback circuitry may be utilized to track time spent awake and asleep. The mechanisms by which clock‐gene expression is coupled to the sleep–wake distribution could be through cellular energy charge whereby clock genes act as energy sensors. The data underscore the interrelationships between energy metabolism, circadian rhythmicity, and sleep regulation.


Neuroscience Letters | 1991

Sleep homeostasis in the rat: Simulation of the time course of EEG slow-wave activity

Paul Franken; Irene Tobler; Alexander A. Borbély

According to the two-process model of sleep regulation, a homeostatic Process S increases during waking and declines during sleep. For humans, the time course of S has been derived from the changes in EEG slow-wave activity (SWA; spectral power density in the 0.75-4.0 Hz range) during sleep. We tested the applicability of the model to sleep in the rat. The simulation was based on the vigilance states for consecutive 8-s epochs of a 96-h experiment in 9 animals. The level of S was made to decrease in epochs of non-REM sleep (NREMS), and to increase in epochs of waking or REM sleep according to exponential functions. By optimizing the initial value and the time constants of S, a close fit between the hourly values of SWA in NREMS and of S was obtained. The biphasic time course of SWA during baseline, its enhancement in the initial recovery period after 24-h sleep deprivation, and its subsequent prolonged undershoot were present in the simulation. We conclude that sleep homeostasis as conceptualized in the two-process model may be a general property of mammalian sleep.


Nature Neuroscience | 2008

T-type Ca2+ channels, SK2 channels and SERCAs gate sleep-related oscillations in thalamic dendrites

L. B. Cueni; Marco Canepari; Rafael Luján; Yann Emmenegger; Masahiko Watanabe; Chris T. Bond; Paul Franken; John P. Adelman; Anita Lüthi

T-type Ca2+ channels (T channels) underlie rhythmic burst discharges during neuronal oscillations that are typical during sleep. However, the Ca2+-dependent effectors that are selectively regulated by T currents remain unknown. We found that, in dendrites of nucleus reticularis thalami (nRt), intracellular Ca2+ concentration increases were dominated by Ca2+ influx through T channels and shaped rhythmic bursting via competition between Ca2+-dependent small-conductance (SK)-type K+ channels and Ca2+ uptake pumps. Oscillatory bursting was initiated via selective activation of dendritically located SK2 channels, whereas Ca2+ sequestration by sarco/endoplasmic reticulum Ca2+-ATPases (SERCAs) and cumulative T channel inactivation dampened oscillations. Sk2−/− (also known as Kcnn2) mice lacked cellular oscillations, showed a greater than threefold reduction in low-frequency rhythms in the electroencephalogram of non–rapid-eye-movement sleep and had disrupted sleep. Thus, the interplay of T channels, SK2 channels and SERCAs in nRt dendrites comprises a specialized Ca2+ signaling triad to regulate oscillatory dynamics related to sleep.


Nature Genetics | 2003

Deficiency in short-chain fatty acid β-oxidation affects theta oscillations during sleep

Mehdi Tafti; Brice Petit; Didier Chollet; Elisabeth Neidhart; Fabienne de Bilbao; Jozsef Z Kiss; Philip A. Wood; Paul Franken

In rodents, the electroencephalogram (EEG) during paradoxical sleep and exploratory behavior is characterized by theta oscillations. Here we show that a deficiency in short-chain acyl-coenzyme A dehydrogenase (encoded by Acads) in mice causes a marked slowing in theta frequency during paradoxical sleep only. We found Acads expression in brain regions involved in theta generation, notably the hippocampus. Microarray analysis of gene expression in mice with mutations in Acads indicates overexpression of Glo1 (encoding glyoxylase 1), a gene involved in the detoxification of metabolic by-products. Administration of acetyl-L-carnitine (ALCAR) to mutant mice significantly recovers slow theta and Glo1 overexpression. Thus, an underappreciated metabolic pathway involving fatty acid β-oxidation also regulates theta oscillations during sleep.


PLOS Biology | 2009

Melanopsin as a sleep modulator: circadian gating of the direct effects of light on sleep and altered sleep homeostasis in Opn4(-/-) mice.

Jessica W. Tsai; Jens Hannibal; Grace Hagiwara; Damien Colas; Elisabeth Ruppert; Norman F. Ruby; H. Craig Heller; Paul Franken; Patrice Bourgin

Analyses in mice deficient for the blue-light-sensitive photopigment melanopsin show that direct effects of light on behavior and EEG depend on the time of day. The data further suggest an unexpected role for melanopsin in sleep homeostasis.


Proceedings of the National Academy of Sciences of the United States of America | 2011

The Ca(V)3.3 calcium channel is the major sleep spindle pacemaker in thalamus.

Simone Astori; Ralf D. Wimmer; Haydn M. Prosser; Corrado Corti; Mauro Corsi; Nicolas Liaudet; Andrea Volterra; Paul Franken; John P. Adelman; Anita Lüthi

Low-threshold (T-type) Ca2+ channels encoded by the CaV3 genes endow neurons with oscillatory properties that underlie slow waves characteristic of the non-rapid eye movement (NREM) sleep EEG. Three CaV3 channel subtypes are expressed in the thalamocortical (TC) system, but their respective roles for the sleep EEG are unclear. CaV3.3 protein is expressed abundantly in the nucleus reticularis thalami (nRt), an essential oscillatory burst generator. We report the characterization of a transgenic CaV3.3−/− mouse line and demonstrate that CaV3.3 channels are indispensable for nRt function and for sleep spindles, a hallmark of natural sleep. The absence of CaV3.3 channels prevented oscillatory bursting in the low-frequency (4–10 Hz) range in nRt cells but spared tonic discharge. In contrast, adjacent TC neurons expressing CaV3.1 channels retained low-threshold bursts. Nevertheless, the generation of synchronized thalamic network oscillations underlying sleep-spindle waves was weakened markedly because of the reduced inhibition of TC neurons via nRt cells. T currents in CaV3.3−/− mice were <30% compared with those in WT mice, and the remaining current, carried by CaV3.2 channels, generated dendritic [Ca2+]i signals insufficient to provoke oscillatory bursting that arises from interplay with Ca2+-dependent small conductance-type 2 K+ channels. Finally, naturally sleeping CaV3.3−/− mice showed a selective reduction in the power density of the σ frequency band (10–12 Hz) at transitions from NREM to REM sleep, with other EEG waves remaining unaltered. Together, these data identify a central role for CaV3.3 channels in the rhythmogenic properties of the sleep-spindle generator and provide a molecular target to elucidate the roles of sleep spindles for brain function and development.


BMC Neuroscience | 2007

A non-circadian role for clock-genes in sleep homeostasis:a strain comparison

Paul Franken; Ryan Thomason; H. Craig Heller; Bruce F. O'Hara

BackgroundWe have previously reported that the expression of circadian clock-genes increases in the cerebral cortex after sleep deprivation (SD) and that the sleep rebound following SD is attenuated in mice deficient for one or more clock-genes. We hypothesized that besides generating circadian rhythms, clock-genes also play a role in the homeostatic regulation of sleep. Here we follow the time course of the forebrain changes in the expression of the clock-genes period (per)-1, per2, and of the clock-controlled gene albumin D-binding protein (dbp) during a 6 h SD and subsequent recovery sleep in three inbred strains of mice for which the homeostatic sleep rebound following SD differs. We reasoned that if clock genes are functionally implicated in sleep homeostasis then the SD-induced changes in gene expression should vary according to the genotypic differences in the sleep rebound.ResultsIn all three strains per expression was increased when animals were kept awake but the rate of increase during the SD as well as the relative increase in per after 6 h SD were highest in the strain for which the sleep rebound was smallest; i.e., DBA/2J (D2). Moreover, whereas in the other two strains per1 and per2 reverted to control levels with recovery sleep, per2 expression specifically, remained elevated in D2 mice. dbp expression increased during the light period both during baseline and during SD although levels were reduced during the latter condition compared to baseline. In contrast to per2, dbp expression reverted to control levels with recovery sleep in D2 only, whereas in the two other strains expression remained decreased.ConclusionThese findings support and extend our previous findings that clock genes in the forebrain are implicated in the homeostatic regulation of sleep and suggest that sustained, high levels of per2 expression may negatively impact recovery sleep.

Collaboration


Dive into the Paul Franken's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge