Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Thomas Curie is active.

Publication


Featured researches published by Thomas Curie.


The Journal of Neuroscience | 2012

Key electrophysiological, molecular, and metabolic signatures of sleep and wakefulness revealed in primary cortical cultures.

Valérie Hinard; Cyril Mikhail; Sylvain Pradervand; Thomas Curie; Riekelt H. Houtkooper; Johan Auwerx; Paul Franken; Mehdi Tafti

Although sleep is defined as a behavioral state, at the cortical level sleep has local and use-dependent features suggesting that it is a property of neuronal assemblies requiring sleep in function of the activation experienced during prior wakefulness. Here we show that mature cortical cultured neurons display a default state characterized by synchronized burst–pause firing activity reminiscent of sleep. This default sleep-like state can be changed to transient tonic firing reminiscent of wakefulness when cultures are stimulated with a mixture of waking neurotransmitters and spontaneously returns to sleep-like state. In addition to electrophysiological similarities, the transcriptome of stimulated cultures strikingly resembles the cortical transcriptome of sleep-deprived mice, and plastic changes as reflected by AMPA receptors phosphorylation are also similar. We used our in vitro model and sleep-deprived animals to map the metabolic pathways activated by waking. Only a few metabolic pathways were identified, including glycolysis, aminoacid, and lipids. Unexpectedly large increases in lysolipids were found both in vivo after sleep deprivation and in vitro after stimulation, strongly suggesting that sleep might play a major role in reestablishing the neuronal membrane homeostasis. With our in vitro model, the cellular and molecular consequences of sleep and wakefulness can now be investigated in a dish.


Cold Spring Harbor Symposia on Quantitative Biology | 2015

Clock-Talk: Interactions between Central and Peripheral Circadian Oscillators in Mammals

Ueli Schibler; Ivana Gotic; Camille Saini; Pascal Gos; Thomas Curie; Yann Emmenegger; Flore Sinturel; Pauline Gosselin; Alan Gerber; Fabienne Fleury-Olela; Gianpaolo Rando; Maud Demarque; Paul Franken

In mammals, including humans, nearly all physiological processes are subject to daily oscillations that are governed by a circadian timing system with a complex hierarchical structure. The central pacemaker, residing in the suprachiasmatic nucleus (SCN) of the ventral hypothalamus, is synchronized daily by photic cues transmitted from the retina to SCN neurons via the retinohypothalamic tract. In turn, the SCN must establish phase coherence between self-sustained and cell-autonomous oscillators present in most peripheral cell types. The synchronization signals (Zeitgebers) can be controlled more or less directly by the SCN. In mice and rats, feeding-fasting rhythms, which are driven by the SCN through rest-activity cycles, are the most potent Zeitgebers for the circadian oscillators of peripheral organs. Signaling through the glucocorticoid receptor and the serum response factor also participate in the phase entrainment of peripheral clocks, and these two pathways are controlled by the SCN independently of feeding-fasting rhythms. Body temperature rhythms, governed by the SCN directly and indirectly through rest-activity cycles, are perhaps the most surprising cues for peripheral oscillators. Although the molecular makeup of circadian oscillators is nearly identical in all cells, these oscillators are used for different purposes in the SCN and in peripheral organs.


Sleep | 2013

Homeostatic and circadian contribution to EEG and molecular state variables of sleep regulation.

Thomas Curie; Mongrain; Stéphane Dorsaz; Géraldine M. Mang; Yann Emmenegger; Paul Franken

STUDY OBJECTIVES Besides their well-established role in circadian rhythms, our findings that the forebrain expression of the clock-genes Per2 and Dbp increases and decreases, respectively, in relation to time spent awake suggest they also play a role in the homeostatic aspect of sleep regulation. Here, we determined whether time of day modulates the effects of elevated sleep pressure on clock-gene expression. Time of day effects were assessed also for recognized electrophysiological (EEG delta power) and molecular (Homer1a) markers of sleep homeostasis. DESIGN EEG and qPCR data were obtained for baseline and recovery from 6-h sleep deprivation starting at ZT0, -6, -12, or -18. SETTING Mouse sleep laboratory. PARTICIPANTS Male mice. INTERVENTIONS Sleep deprivation. RESULTS The sleep-deprivation induced changes in Per2 and Dbp expression importantly varied with time of day, such that Per2 could even decrease during sleep deprivations occurring at the decreasing phase in baseline. Dbp showed similar, albeit opposite dynamics. These unexpected results could be reliably predicted assuming that these transcripts behave according to a driven damped harmonic oscillator. As expected, the sleep-wake distribution accounted for a large degree of the changes in EEG delta power and Homer1a. Nevertheless, the sleep deprivation-induced increase in delta power varied also with time of day with higher than expected levels when recovery sleep started at dark onset. CONCLUSIONS Per2 and delta power are widely used as exclusive state variables of the circadian and homeostatic process, respectively. Our findings demonstrate a considerable cross-talk between these two processes. As Per2 in the brain responds to both sleep loss and time of day, this molecule is well positioned to keep track of and to anticipate homeostatic sleep need. CITATION Curie T; Mongrain V; Dorsaz S; Mang GM; Emmenegger Y; Franken P. Homeostatic and circadian contribution to EEG and molecular state variables of sleep regulation. SLEEP 2013;36(3):311-323.


Genes & Development | 2013

Real-time recording of circadian liver gene expression in freely moving mice reveals the phase-setting behavior of hepatocyte clocks

Camille Saini; André Liani; Thomas Curie; Pascal Gos; Florian Kreppel; Yann Emmenegger; Luigi Bonacina; Jean-Pierre Wolf; Yves Alain Poget; Paulus Franken; Ulrich Schibler

The mammalian circadian timing system consists of a master pacemaker in the suprachiasmatic nucleus (SCN) in the hypothalamus, which is thought to set the phase of slave oscillators in virtually all body cells. However, due to the lack of appropriate in vivo recording technologies, it has been difficult to study how the SCN synchronizes oscillators in peripheral tissues. Here we describe the real-time recording of bioluminescence emitted by hepatocytes expressing circadian luciferase reporter genes in freely moving mice. The technology employs a device dubbed RT-Biolumicorder, which consists of a cylindrical cage with reflecting conical walls that channel photons toward a photomultiplier tube. The monitoring of circadian liver gene expression revealed that hepatocyte oscillators of SCN-lesioned mice synchronized more rapidly to feeding cycles than hepatocyte clocks of intact mice. Hence, the SCN uses signaling pathways that counteract those of feeding rhythms when their phase is in conflict with its own phase.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Neuroligin-1 links neuronal activity to sleep-wake regulation

Janine El Helou; Erika Bélanger-Nelson; Marlène Freyburger; Stéphane Dorsaz; Thomas Curie; Francesco La Spada; Pierre-Olivier Gaudreault; Eric Beaumont; Philippe Pouliot; Frédéric Lesage; Marcos G. Frank; Paul Franken; Valérie Mongrain

Maintaining wakefulness is associated with a progressive increase in the need for sleep. This phenomenon has been linked to changes in synaptic function. The synaptic adhesion molecule Neuroligin-1 (NLG1) controls the activity and synaptic localization of N-methyl-d-aspartate receptors, which activity is impaired by prolonged wakefulness. We here highlight that this pathway may underlie both the adverse effects of sleep loss on cognition and the subsequent changes in cortical synchrony. We found that the expression of specific Nlg1 transcript variants is changed by sleep deprivation in three mouse strains. These observations were associated with strain-specific changes in synaptic NLG1 protein content. Importantly, we showed that Nlg1 knockout mice are not able to sustain wakefulness and spend more time in nonrapid eye movement sleep than wild-type mice. These changes occurred with modifications in waking quality as exemplified by low theta/alpha activity during wakefulness and poor preference for social novelty, as well as altered delta synchrony during sleep. Finally, we identified a transcriptional pathway that could underlie the sleep/wake-dependent changes in Nlg1 expression and that involves clock transcription factors. We thus suggest that NLG1 is an element that contributes to the coupling of neuronal activity to sleep/wake regulation.


Sleep | 2015

In Vivo Imaging of the Central and Peripheral Effects of Sleep Deprivation and Suprachiasmatic Nuclei Lesion on PERIOD-2 Protein in Mice.

Thomas Curie; Stéphanie Maret; Yann Emmenegger; Paul Franken

STUDY OBJECTIVES That sleep deprivation increases the brain expression of various clock genes has been well documented. Based on these and other findings we hypothesized that clock genes not only underlie circadian rhythm generation but are also implicated in sleep homeostasis. However, long time lags have been reported between the changes in the clock gene messenger RNA levels and their encoded proteins. It is therefore crucial to establish whether also protein levels increase within the time frame known to activate a homeostatic sleep response. We report on the central and peripheral effects of sleep deprivation on PERIOD-2 (PER2) protein both in intact and suprachiasmatic nuclei-lesioned mice. DESIGN In vivo and in situ PER2 imaging during baseline, sleep deprivation, and recovery. SETTINGS Mouse sleep-recording facility. PARTICIPANTS Per2::Luciferase knock-in mice. INTERVENTIONS N/A. MEASUREMENTS AND RESULTS Six-hour sleep deprivation increased PER2 not only in the brain but also in liver and kidney. Remarkably, the effects in the liver outlasted those observed in the brain. Within the brain the increase in PER2 concerned the cerebral cortex mainly, while leaving suprachiasmatic nuclei (SCN) levels unaffected. Against expectation, sleep deprivation did not increase PER2 in the brain of arrhythmic SCN-lesioned mice because of higher PER2 levels in baseline. In contrast, liver PER2 levels did increase in these mice similar to the sham and partially lesioned controls. CONCLUSIONS Our results stress the importance of considering both sleep-wake dependent and circadian processes when quantifying clock-gene levels. Because sleep deprivation alters PERIOD-2 in the brain as well as in the periphery, it is tempting to speculate that clock genes constitute a common pathway mediating the shared and well-known adverse effects of both chronic sleep loss and disrupted circadian rhythmicity on metabolic health.


Diabetes, Obesity and Metabolism | 2015

The systemic control of circadian gene expression.

A. Gerber; Camille Saini; Thomas Curie; Yann Emmenegger; Gianpaolo Rando; Pauline Gosselin; Ivana Gotic; Pascal Gos; Paul Franken; Ueli Schibler

The mammalian circadian timing system consists of a central pacemaker in the brains suprachiasmatic nucleus (SCN) and subsidiary oscillators in nearly all body cells. The SCN clock, which is adjusted to geophysical time by the photoperiod, synchronizes peripheral clocks through a wide variety of systemic cues. The latter include signals depending on feeding cycles, glucocorticoid hormones, rhythmic blood‐borne signals eliciting daily changes in actin dynamics and serum response factor (SRF) activity, and sensors of body temperature rhythms, such as heat shock transcription factors and the cold‐inducible RNA‐binding protein CIRP. To study these systemic signalling pathways, we designed and engineered a novel, highly photosensitive apparatus, dubbed RT‐Biolumicorder. This device enables us to record circadian luciferase reporter gene expression in the liver and other organs of freely moving mice over months in real time. Owing to the multitude of systemic signalling pathway involved in the phase resetting of peripheral clocks the disruption of any particular one has only minor effects on the steady state phase of circadian gene expression in organs such as the liver. Nonetheless, the implication of specific pathways in the synchronization of clock gene expression can readily be assessed by monitoring the phase‐shifting kinetics using the RT‐Biolumicorder.


PLOS ONE | 2012

Morbillivirus glycoprotein expression induces ER stress, alters Ca2+ homeostasis and results in the release of vasostatin.

Jean-Marc Brunner; Philippe Plattet; Marie-Agnès Doucey; Lia Rosso; Thomas Curie; Alexandra Montagner; Riccardo Wittek; Marc Vandelvelde; Andreas Zurbriggen; Harald Hirling; Béatrice Desvergne

Although the pathology of Morbillivirus in the central nervous system (CNS) is well described, the molecular basis of neurodegenerative events still remains poorly understood. As a model to explore Morbillivirus-mediated CNS dysfunctions, we used canine distemper virus (CDV) that we inoculated into two different cell systems: a monkey cell line (Vero) and rat primary hippocampal neurons. Importantly, the recombinant CDV used in these studies not only efficiently infects both cell types but recapitulates the uncommon, non-cytolytic cell-to-cell spread mediated by virulent CDVs in brain of dogs. Here, we demonstrated that both CDV surface glycoproteins (F and H) markedly accumulated in the endoplasmic reticulum (ER). This accumulation triggered an ER stress, characterized by increased expression of the ER resident chaperon calnexin and the proapoptotic transcription factor CHOP/GADD 153. The expression of calreticulin (CRT), another ER resident chaperon critically involved in the response to misfolded proteins and in Ca2+ homeostasis, was also upregulated. Transient expression of recombinant CDV F and H surface glycoproteins in Vero cells and primary hippocampal neurons further confirmed a correlation between their accumulation in the ER, CRT upregulation, ER stress and disruption of ER Ca2+ homeostasis. Furthermore, CDV infection induced CRT fragmentation with re-localisation of a CRT amino-terminal fragment, also known as vasostatin, on the surface of infected and neighbouring non-infected cells. Altogether, these results suggest that ER stress, CRT fragmentation and re-localization on the cell surface may contribute to cytotoxic effects and ensuing cell dysfunctions triggered by Morbillivirus, a mechanism that might potentially be relevant for other neurotropic viruses.


Archive | 2012

Circadian Clock Genes and the Regulation of Sleep

Thomas Curie; Paul Franken

Sleep and waking are controlled by opposing interactions between circadian and homeostatic processes. A circadian process generated by the suprachiasmatic nucleus determines when sleep should occur, while a homeostatic process keeps track of time spent awake and asleep and signals sleep need or sleep propensity. Recent evidence indicates that these two processes employ many of the same set of genes. Herein, we review the basic concepts of the circadian and homeostatic regulation of sleep, and then outline the molecular components of circadian clock. We then discuss the evidence demonstrating a role of clock genes in sleep homeostasis in flies, mice, and humans. We conclude by suggesting that clock genes might be crucial for integrating homeostatic need, not only that of sleep but also of food intake and energy metabolism.


Neurophysiologie Clinique-clinical Neurophysiology | 2012

La perte de sommeil entraîne une altération de la liaison des facteurs de transcriptions circadiens à l’ADN

F. La Spada; Valérie Mongrain; Thomas Curie; Paul Franken

Parkinson que chez les patients sans syndrome parkinsonien en éveil (TCSP idiopathique et narcolepsie). Conclusion.— Les mouvements de TCSP ont un profil commun, quelle que soit la cause du TCSP (avec ou sans maladie du mouvement en éveil), délimitant une signature typique du TCSP et une origine commune (cortex moteur non filtré par les ganglions de la base ?). Cette signature pourrait être utilisée pour reconnaître le TCSP sur les tracés artéfactés, et en surveillance vidéo à la maison ou en institution. Pour en savoir plus Oudiette et al., Mov Dis 2011; sous presse.

Collaboration


Dive into the Thomas Curie's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mehdi Tafti

University of Lausanne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Johan Auwerx

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge