Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paul H. Davis is active.

Publication


Featured researches published by Paul H. Davis.


Nucleic Acids Research | 2004

WormBase: a multi-species resource for nematode biology and genomics.

Todd W. Harris; Nansheng Chen; Fiona Cunningham; Marcela K. Tello-Ruiz; Igor Antoshechkin; Carol Bastiani; Tamberlyn Bieri; Darin Blasiar; Keith Bradnam; Juancarlos Chan; Chao-Kung Chen; Wen J. Chen; Paul H. Davis; Eimear E. Kenny; Ranjana Kishore; Daniel Lawson; Raymond Y. N. Lee; Hans-Michael Müller; Cecilia Nakamura; Philip Ozersky; Andrei Petcherski; Anthony Rogers; Aniko Sabo; Erich M. Schwarz; Kimberly Van Auken; Qinghua Wang; Richard Durbin; John Spieth; Paul W. Sternberg; Lincoln Stein

WormBase (http://www.wormbase.org/) is the central data repository for information about Caenorhabditis elegans and related nematodes. As a model organism database, WormBase extends beyond the genomic sequence, integrating experimental results with extensively annotated views of the genome. The WormBase Consortium continues to expand the biological scope and utility of WormBase with the inclusion of large-scale genomic analyses, through active data and literature curation, through new analysis and visualization tools, and through refinement of the user interface. Over the past year, the nearly complete genomic sequence and comparative analyses of the closely related species Caenorhabditis briggsae have been integrated into WormBase, including gene predictions, ortholog assignments and a new synteny viewer to display the relationships between the two species. Extensive site-wide refinement of the user interface now provides quick access to the most frequently accessed resources and a consistent browsing experience across the site. Unified single-page views now provide complete summaries of commonly accessed entries like genes. These advances continue to increase the utility of WormBase for C.elegans researchers, as well as for those researchers exploring problems in functional and comparative genomics in the context of a powerful genetic system.


Nature | 2010

Chemical genetics of Plasmodium falciparum

W. Armand Guiguemde; Anang A. Shelat; David Bouck; Sandra Duffy; Gregory J. Crowther; Paul H. Davis; David C. Smithson; Michele C. Connelly; Julie Clark; Fangyi Zhu; María Belén Jiménez-Díaz; María Santos Martínez; Emily B. Wilson; Abhai K. Tripathi; Jiri Gut; Elizabeth R. Sharlow; Ian Bathurst; Farah El Mazouni; Joseph W. Fowble; Isaac P. Forquer; Paula L. McGinley; Steve Castro; Iñigo Angulo-Barturen; Santiago Ferrer; Philip J. Rosenthal; Joseph L. DeRisi; David J. Sullivan; John S. Lazo; David S. Roos; Michael K. Riscoe

Malaria caused by Plasmodium falciparum is a disease that is responsible for 880,000 deaths per year worldwide. Vaccine development has proved difficult and resistance has emerged for most antimalarial drugs. To discover new antimalarial chemotypes, we have used a phenotypic forward chemical genetic approach to assay 309,474 chemicals. Here we disclose structures and biological activity of the entire library—many of which showed potent in vitro activity against drug-resistant P. falciparum strains—and detailed profiling of 172 representative candidates. A reverse chemical genetic study identified 19 new inhibitors of 4 validated drug targets and 15 novel binders among 61 malarial proteins. Phylochemogenetic profiling in several organisms revealed similarities between Toxoplasma gondii and mammalian cell lines and dissimilarities between P. falciparum and related protozoans. One exemplar compound displayed efficacy in a murine model. Our findings provide the scientific community with new starting points for malaria drug discovery.


Nucleic Acids Research | 2010

WormBase: a comprehensive resource for nematode research

Todd W. Harris; Igor Antoshechkin; Tamberlyn Bieri; Darin Blasiar; Juancarlos Chan; Wen J. Chen; Norie De La Cruz; Paul H. Davis; Margaret Duesbury; Ruihua Fang; Jolene S. Fernandes; Michael Han; Ranjana Kishore; Raymond Y. N. Lee; Hans-Michael Müller; Cecilia Nakamura; Philip Ozersky; Andrei Petcherski; Arun Rangarajan; Anthony Rogers; Gary Schindelman; Erich M. Schwarz; Mary Ann Tuli; Kimberly Van Auken; Daniel Wang; Xiaodong Wang; Gary Williams; Karen Yook; Richard Durbin; Lincoln Stein

WormBase (http://www.wormbase.org) is a central data repository for nematode biology. Initially created as a service to the Caenorhabditis elegans research field, WormBase has evolved into a powerful research tool in its own right. In the past 2 years, we expanded WormBase to include the complete genomic sequence, gene predictions and orthology assignments from a range of related nematodes. This comparative data enrich the C. elegans data with improved gene predictions and a better understanding of gene function. In turn, they bring the wealth of experimental knowledge of C. elegans to other systems of medical and agricultural importance. Here, we describe new species and data types now available at WormBase. In addition, we detail enhancements to our curatorial pipeline and website infrastructure to accommodate new genomes and an extensive user base.


Nucleic Acids Research | 2004

WormBase: a comprehensive data resource for Caenorhabditis biology and genomics

Nansheng Chen; Todd W. Harris; Igor Antoshechkin; Carol Bastiani; Tamberlyn Bieri; Darin Blasiar; Keith Bradnam; Payan Canaran; Juancarlos Chan; Chao-Kung Chen; Wen J. Chen; Fiona Cunningham; Paul H. Davis; Eimear E. Kenny; Ranjana Kishore; Daniel Lawson; Raymond Y. N. Lee; Hans-Michael Müller; Cecilia Nakamura; Shraddha Pai; Philip Ozersky; Andrei Petcherski; Anthony Rogers; Aniko Sabo; Erich M. Schwarz; Kimberly Van Auken; Qinghua Wang; Richard Durbin; John Spieth; Paul W. Sternberg

WormBase (http://www.wormbase.org), the model organism database for information about Caenorhabditis elegans and related nematodes, continues to expand in breadth and depth. Over the past year, WormBase has added multiple large-scale datasets including SAGE, interactome, 3D protein structure datasets and NCBI KOGs. To accommodate this growth, the International WormBase Consortium has improved the user interface by adding new features to aid in navigation, visualization of large-scale datasets, advanced searching and data mining. Internally, we have restructured the database models to rationalize the representation of genes and to prepare the system to accept the genome sequences of three additional Caenorhabditis species over the coming year.


Nucleic Acids Research | 2012

WormBase 2012: more genomes, more data, new website

Karen Yook; Todd W. Harris; Tamberlyn Bieri; Abigail Cabunoc; Juancarlos Chan; Wen J. Chen; Paul H. Davis; Norie De La Cruz; Adrian Duong; Ruihua Fang; Uma Ganesan; Christian A. Grove; Kevin L. Howe; Snehalata Kadam; Ranjana Kishore; Raymond Y. N. Lee; Yuling Li; Hans-Michael Müller; Cecilia Nakamura; Bill Nash; Philip Ozersky; Michael Paulini; Daniela Raciti; Arun Rangarajan; Gary Schindelman; Xiaoqi Shi; Erich M. Schwarz; Mary Ann Tuli; Kimberly Van Auken; Daniel Wang

Since its release in 2000, WormBase (http://www.wormbase.org) has grown from a small resource focusing on a single species and serving a dedicated research community, to one now spanning 15 species essential to the broader biomedical and agricultural research fields. To enhance the rate of curation, we have automated the identification of key data in the scientific literature and use similar methodology for data extraction. To ease access to the data, we are collaborating with journals to link entities in research publications to their report pages at WormBase. To facilitate discovery, we have added new views of the data, integrated large-scale datasets and expanded descriptions of models for human disease. Finally, we have introduced a dramatic overhaul of the WormBase website for public beta testing. Designed to balance complexity and usability, the new site is species-agnostic, highly customizable, and interactive. Casual users and developers alike will be able to leverage the public RESTful application programming interface (API) to generate custom data mining solutions and extensions to the site. We report on the growth of our database and on our work in keeping pace with the growing demand for data, efforts to anticipate the requirements of users and new collaborations with the larger science community.


Science | 2009

Subducting slab ultra-slow velocity layer coincident with silent earthquakes in southern Mexico.

Teh-Ru Alex Song; Donald V. Helmberger; Michael R. Brudzinski; Robert W. Clayton; Paul H. Davis; Xyoli Pérez-Campos; S. K. Singh

Seismic mapping suggests that silent earthquakes may be related to an ultralow velocity layer on top of a subducting slab. Hot Silent Quakes Subduction zones tend to produce the largest and potentially most destructive earthquakes. Recent observations show that some deformation in several subduction zones seems to be occurring through small or “silent” quakes. The origin of these silent quakes, and their effect on the seismic hazard, is uncertain. Song et al. (p. 502) use a specific seismic signal to map out thin regions with low seismic velocities on the subduction zone beneath southern Mexico. The regions seem to occur at depths below the seismogenic zone where temperatures are higher. These high temperatures and the silent quakes may reflect the release and episodic trapping of fluids from metamorphic reactions. Great earthquakes have repeatedly occurred on the plate interface in a few shallow-dipping subduction zones where the subducting and overriding plates are strongly locked. Silent earthquakes (or slow slip events) were recently discovered at the down-dip extension of the locked zone and interact with the earthquake cycle. Here, we show that locally observed converted SP arrivals and teleseismic underside reflections that sample the top of the subducting plate in southern Mexico reveal that the ultra-slow velocity layer (USL) varies spatially (3 to 5 kilometers, with an S-wave velocity of ~2.0 to 2.7 kilometers per second). Most slow slip patches coincide with the presence of the USL, and they are bounded by the absence of the USL. The extent of the USL delineates the zone of transitional frictional behavior.


Nucleic Acids Research | 2014

WormBase 2014: new views of curated biology

Todd W. Harris; Joachim Baran; Tamberlyn Bieri; Abigail Cabunoc; Juancarlos Chan; Wen J. Chen; Paul H. Davis; James Done; Christian A. Grove; Kevin L. Howe; Ranjana Kishore; Raymond Y. N. Lee; Yuling Li; Hans-Michael Müller; Cecilia Nakamura; Philip Ozersky; Michael Paulini; Daniela Raciti; Gary Schindelman; Mary Ann Tuli; Kimberly Van Auken; Daniel Wang; Xiaodong Wang; Gary Williams; Jennifer Wong; Karen Yook; Tim Schedl; Jonathan Hodgkin; Matthew Berriman; Paul J. Kersey

WormBase (http://www.wormbase.org/) is a highly curated resource dedicated to supporting research using the model organism Caenorhabditis elegans. With an electronic history predating the World Wide Web, WormBase contains information ranging from the sequence and phenotype of individual alleles to genome-wide studies generated using next-generation sequencing technologies. In recent years, we have expanded the contents to include data on additional nematodes of agricultural and medical significance, bringing the knowledge of C. elegans to bear on these systems and providing support for underserved research communities. Manual curation of the primary literature remains a central focus of the WormBase project, providing users with reliable, up-to-date and highly cross-linked information. In this update, we describe efforts to organize the original atomized and highly contextualized curated data into integrated syntheses of discrete biological topics. Next, we discuss our experiences coping with the vast increase in available genome sequences made possible through next-generation sequencing platforms. Finally, we describe some of the features and tools of the new WormBase Web site that help users better find and explore data of interest.


Science | 2009

Apicomplexan Parasites Co-Opt Host Calpains to Facilitate Their Escape from Infected Cells

Rajesh Chandramohanadas; Paul H. Davis; Daniel P. Beiting; Michael B. Harbut; Claire Darling; Geetha Velmourougane; Ming Yeh Lee; Peter A. Greer; David S. Roos; Doron C. Greenbaum

Let Me Out Apicomplexan parasites like Plasmodium falciparum, which causes malaria, and Toxoplasma gondii, which cause toxoplasmosis, replicate inside animal host cells. In order for infections to spread successfully within the host from cell to cell, daughter parasites after replication need to be able to escape from their incubator cell. In the course of studies intended to elucidate the functions of proteases during parasite infection, Chandramohanadas et al. (p. 794, published online 2 April) noted that host cell calpain is the only protease present at the right time and place to facilitate the egress of malaria parasites from infected red blood cells. Parasite egress from infected resealed erythrocytes was prevented when calpain was removed. Moreover, T. gondii was unable to escape efficiently from murine fibroblast knockouts lacking a calpain regulatory subunit. A host protease helps newly replicated microbial parasites escape from incubator cells. Apicomplexan parasites, including Plasmodium falciparum and Toxoplasma gondii (the causative agents of malaria and toxoplasmosis, respectively), are responsible for considerable morbidity and mortality worldwide. These pathogenic protozoa replicate within an intracellular vacuole inside of infected host cells, from which they must escape to initiate a new lytic cycle. By integrating cell biological, pharmacological, and genetic approaches, we provide evidence that both Plasmodium and Toxoplasma hijack host cell calpain proteases to facilitate parasite egress. Immunodepletion or inhibition of calpain-1 in hypotonically lysed and resealed erythrocytes prevented the escape of P. falciparum parasites, which was restored by adding purified calpain-1. Similarly, efficient egress of T. gondii from mammalian fibroblasts was blocked by either small interfering RNA–mediated suppression or genetic deletion of calpain activity and could be restored by genetic complementation.


Molecular Microbiology | 2006

Comparative proteomic analysis of two Entamoeba histolytica strains with different virulence phenotypes identifies peroxiredoxin as an important component of amoebic virulence

Paul H. Davis; Xiaochun Zhang; Jianhua Guo; R. Reid Townsend; Samuel L. Stanley

Entamoeba histolytica is a protozoan intestinal parasite that causes amoebic colitis and amoebic liver abscess. To identify virulence factors of E. histolytica, we first defined the phenotypes of two E. histolytica strains, HM‐1:IMSS, the prototype virulent strain, and E. histolytica Rahman, a strain that was reportedly less virulent than HM‐1:IMSS. We found that compared with HM‐1:IMSS, Rahman has a defect in erythrophagocytosis and the ability to cause amoebic colitis in human colonic xenografts. We used differential in‐gel 2D electrophoresis to compare the proteome of Rahman and HM‐1:IMSS, and identified six proteins that were differentially expressed above a fivefold level between the two organisms. These included two proteins with antioxidative properties (peroxiredoxin and superoxide dismutase), and three proteins of unknown function, grainin 1, grainin 2 and a protein containing a LIM‐domain. Overexpression of peroxiredoxin in Rahman rendered the transgenic trophozoites more resistant to killing by H2O2 in vitro, and infection with Rahman trophozoites expressing higher levels of peroxiredoxin was associated with higher levels of intestinal inflammation in human colonic xenografts, and more severe disease based on histology. In contrast, higher levels of grainin appear to be associated with a reduced virulence phenotype, and E. histolytica HM‐1:IMSS trophozoites infecting human intestinal xenografts show marked decreases in grainin expression. Our data indicate that there are definable molecular differences between Rahman and HM‐1:IMSS that may explain the phenotypic differences, and identify peroxiredoxin as an important component of virulence in amoebic colitis.


Invertebrate Neuroscience | 2007

The nicotinic acetylcholine receptor gene family of the nematode Caenorhabditis elegans: an update on nomenclature

Andrew K. Jones; Paul H. Davis; Jonathan Hodgkin; David B. Sattelle

The simple nematode, Caenorhabditis elegans, possesses the most extensive known gene family of nicotinic acetylcholine receptor (nAChR)-like subunits. Whilst all show greatest similarity with nAChR subunits of both invertebrates and vertebrates, phylogenetic analysis suggests that just over half of these (32) may represent other members of the cys-loop ligand-gated ion channel superfamily. We have introduced a novel nomenclature system for these “Orphan” subunits, designating them as lgc genes (ligand-gated ion channels of the cys-loop superfamily), which can also be applied in future to unnamed and uncharacterised members of the cys-loop ligand-gated ion channel superfamily. We present here the resulting updated version of the C. elegans nAChR gene family and related ligand-gated ion channel genes.

Collaboration


Dive into the Paul H. Davis's collaboration.

Top Co-Authors

Avatar

Igor Stubailo

University of California

View shared research outputs
Top Co-Authors

Avatar

Richard Guy

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Martin Lukac

University of California

View shared research outputs
Top Co-Authors

Avatar

Allen Husker

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Andrew J. Trease

University of Nebraska Omaha

View shared research outputs
Top Co-Authors

Avatar

David S. Roos

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Philip Ozersky

Washington University in St. Louis

View shared research outputs
Researchain Logo
Decentralizing Knowledge