Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Philip Ozersky is active.

Publication


Featured researches published by Philip Ozersky.


Nature | 2003

The male-specific region of the human Y chromosome is a mosaic of discrete sequence classes

Helen Skaletsky; Tomoko Kuroda-Kawaguchi; Patrick Minx; Holland S. Cordum; LaDeana W. Hillier; Laura G. Brown; Sjoerd Repping; Johar Ali; Tamberlyn Bieri; Asif T. Chinwalla; Andrew Delehaunty; Kim D. Delehaunty; Hui Du; Ginger Fewell; Lucinda Fulton; Robert S. Fulton; Tina Graves; Shunfang Hou; Philip Latrielle; Shawn Leonard; Elaine R. Mardis; Rachel Maupin; John D. McPherson; Tracie L. Miner; William E. Nash; Christine Nguyen; Philip Ozersky; Kymberlie H. Pepin; Susan Rock; Tracy Rohlfing

The male-specific region of the Y chromosome, the MSY, differentiates the sexes and comprises 95% of the chromosomes length. Here, we report that the MSY is a mosaic of heterochromatic sequences and three classes of euchromatic sequences: X-transposed, X-degenerate and ampliconic. These classes contain all 156 known transcription units, which include 78 protein-coding genes that collectively encode 27 distinct proteins. The X-transposed sequences exhibit 99% identity to the X chromosome. The X-degenerate sequences are remnants of ancient autosomes from which the modern X and Y chromosomes evolved. The ampliconic class includes large regions (about 30% of the MSY euchromatin) where sequence pairs show greater than 99.9% identity, which is maintained by frequent gene conversion (non-reciprocal transfer). The most prominent features here are eight massive palindromes, at least six of which contain testis genes.


Nucleic Acids Research | 2004

WormBase: a multi-species resource for nematode biology and genomics.

Todd W. Harris; Nansheng Chen; Fiona Cunningham; Marcela K. Tello-Ruiz; Igor Antoshechkin; Carol Bastiani; Tamberlyn Bieri; Darin Blasiar; Keith Bradnam; Juancarlos Chan; Chao-Kung Chen; Wen J. Chen; Paul H. Davis; Eimear E. Kenny; Ranjana Kishore; Daniel Lawson; Raymond Y. N. Lee; Hans-Michael Müller; Cecilia Nakamura; Philip Ozersky; Andrei Petcherski; Anthony Rogers; Aniko Sabo; Erich M. Schwarz; Kimberly Van Auken; Qinghua Wang; Richard Durbin; John Spieth; Paul W. Sternberg; Lincoln Stein

WormBase (http://www.wormbase.org/) is the central data repository for information about Caenorhabditis elegans and related nematodes. As a model organism database, WormBase extends beyond the genomic sequence, integrating experimental results with extensively annotated views of the genome. The WormBase Consortium continues to expand the biological scope and utility of WormBase with the inclusion of large-scale genomic analyses, through active data and literature curation, through new analysis and visualization tools, and through refinement of the user interface. Over the past year, the nearly complete genomic sequence and comparative analyses of the closely related species Caenorhabditis briggsae have been integrated into WormBase, including gene predictions, ortholog assignments and a new synteny viewer to display the relationships between the two species. Extensive site-wide refinement of the user interface now provides quick access to the most frequently accessed resources and a consistent browsing experience across the site. Unified single-page views now provide complete summaries of commonly accessed entries like genes. These advances continue to increase the utility of WormBase for C.elegans researchers, as well as for those researchers exploring problems in functional and comparative genomics in the context of a powerful genetic system.


Nucleic Acids Research | 2010

WormBase: a comprehensive resource for nematode research

Todd W. Harris; Igor Antoshechkin; Tamberlyn Bieri; Darin Blasiar; Juancarlos Chan; Wen J. Chen; Norie De La Cruz; Paul H. Davis; Margaret Duesbury; Ruihua Fang; Jolene S. Fernandes; Michael Han; Ranjana Kishore; Raymond Y. N. Lee; Hans-Michael Müller; Cecilia Nakamura; Philip Ozersky; Andrei Petcherski; Arun Rangarajan; Anthony Rogers; Gary Schindelman; Erich M. Schwarz; Mary Ann Tuli; Kimberly Van Auken; Daniel Wang; Xiaodong Wang; Gary Williams; Karen Yook; Richard Durbin; Lincoln Stein

WormBase (http://www.wormbase.org) is a central data repository for nematode biology. Initially created as a service to the Caenorhabditis elegans research field, WormBase has evolved into a powerful research tool in its own right. In the past 2 years, we expanded WormBase to include the complete genomic sequence, gene predictions and orthology assignments from a range of related nematodes. This comparative data enrich the C. elegans data with improved gene predictions and a better understanding of gene function. In turn, they bring the wealth of experimental knowledge of C. elegans to other systems of medical and agricultural importance. Here, we describe new species and data types now available at WormBase. In addition, we detail enhancements to our curatorial pipeline and website infrastructure to accommodate new genomes and an extensive user base.


Nucleic Acids Research | 2004

WormBase: a comprehensive data resource for Caenorhabditis biology and genomics

Nansheng Chen; Todd W. Harris; Igor Antoshechkin; Carol Bastiani; Tamberlyn Bieri; Darin Blasiar; Keith Bradnam; Payan Canaran; Juancarlos Chan; Chao-Kung Chen; Wen J. Chen; Fiona Cunningham; Paul H. Davis; Eimear E. Kenny; Ranjana Kishore; Daniel Lawson; Raymond Y. N. Lee; Hans-Michael Müller; Cecilia Nakamura; Shraddha Pai; Philip Ozersky; Andrei Petcherski; Anthony Rogers; Aniko Sabo; Erich M. Schwarz; Kimberly Van Auken; Qinghua Wang; Richard Durbin; John Spieth; Paul W. Sternberg

WormBase (http://www.wormbase.org), the model organism database for information about Caenorhabditis elegans and related nematodes, continues to expand in breadth and depth. Over the past year, WormBase has added multiple large-scale datasets including SAGE, interactome, 3D protein structure datasets and NCBI KOGs. To accommodate this growth, the International WormBase Consortium has improved the user interface by adding new features to aid in navigation, visualization of large-scale datasets, advanced searching and data mining. Internally, we have restructured the database models to rationalize the representation of genes and to prepare the system to accept the genome sequences of three additional Caenorhabditis species over the coming year.


Nucleic Acids Research | 2012

WormBase 2012: more genomes, more data, new website

Karen Yook; Todd W. Harris; Tamberlyn Bieri; Abigail Cabunoc; Juancarlos Chan; Wen J. Chen; Paul H. Davis; Norie De La Cruz; Adrian Duong; Ruihua Fang; Uma Ganesan; Christian A. Grove; Kevin L. Howe; Snehalata Kadam; Ranjana Kishore; Raymond Y. N. Lee; Yuling Li; Hans-Michael Müller; Cecilia Nakamura; Bill Nash; Philip Ozersky; Michael Paulini; Daniela Raciti; Arun Rangarajan; Gary Schindelman; Xiaoqi Shi; Erich M. Schwarz; Mary Ann Tuli; Kimberly Van Auken; Daniel Wang

Since its release in 2000, WormBase (http://www.wormbase.org) has grown from a small resource focusing on a single species and serving a dedicated research community, to one now spanning 15 species essential to the broader biomedical and agricultural research fields. To enhance the rate of curation, we have automated the identification of key data in the scientific literature and use similar methodology for data extraction. To ease access to the data, we are collaborating with journals to link entities in research publications to their report pages at WormBase. To facilitate discovery, we have added new views of the data, integrated large-scale datasets and expanded descriptions of models for human disease. Finally, we have introduced a dramatic overhaul of the WormBase website for public beta testing. Designed to balance complexity and usability, the new site is species-agnostic, highly customizable, and interactive. Casual users and developers alike will be able to leverage the public RESTful application programming interface (API) to generate custom data mining solutions and extensions to the site. We report on the growth of our database and on our work in keeping pace with the growing demand for data, efforts to anticipate the requirements of users and new collaborations with the larger science community.


Nucleic Acids Research | 2014

WormBase 2014: new views of curated biology

Todd W. Harris; Joachim Baran; Tamberlyn Bieri; Abigail Cabunoc; Juancarlos Chan; Wen J. Chen; Paul H. Davis; James Done; Christian A. Grove; Kevin L. Howe; Ranjana Kishore; Raymond Y. N. Lee; Yuling Li; Hans-Michael Müller; Cecilia Nakamura; Philip Ozersky; Michael Paulini; Daniela Raciti; Gary Schindelman; Mary Ann Tuli; Kimberly Van Auken; Daniel Wang; Xiaodong Wang; Gary Williams; Jennifer Wong; Karen Yook; Tim Schedl; Jonathan Hodgkin; Matthew Berriman; Paul J. Kersey

WormBase (http://www.wormbase.org/) is a highly curated resource dedicated to supporting research using the model organism Caenorhabditis elegans. With an electronic history predating the World Wide Web, WormBase contains information ranging from the sequence and phenotype of individual alleles to genome-wide studies generated using next-generation sequencing technologies. In recent years, we have expanded the contents to include data on additional nematodes of agricultural and medical significance, bringing the knowledge of C. elegans to bear on these systems and providing support for underserved research communities. Manual curation of the primary literature remains a central focus of the WormBase project, providing users with reliable, up-to-date and highly cross-linked information. In this update, we describe efforts to organize the original atomized and highly contextualized curated data into integrated syntheses of discrete biological topics. Next, we discuss our experiences coping with the vast increase in available genome sequences made possible through next-generation sequencing platforms. Finally, we describe some of the features and tools of the new WormBase Web site that help users better find and explore data of interest.


Nucleic Acids Research | 2007

WormBase: new content and better access

Tamberlyn Bieri; Darin Blasiar; Philip Ozersky; Igor Antoshechkin; Carol Bastiani; Payan Canaran; Juancarlos Chan; Nansheng Chen; Wen J. Chen; Paul Davis; Tristan J. Fiedler; Lisa R. Girard; Michael Han; Todd W. Harris; Ranjana Kishore; Raymond Y. N. Lee; Sheldon J. McKay; Hans-Michael Müller; Cecilia Nakamura; Andrei Petcherski; Arun Rangarajan; Anthony Rogers; Gary Schindelman; Erich M. Schwarz; William Spooner; Mary Ann Tuli; Kimberly Van Auken; Daniel Wang; Xiaodong Wang; Gary Williams

WormBase (), a model organism database for Caenorhabditis elegans and other related nematodes, continues to evolve and expand. Over the past year WormBase has added new data on C.elegans, including data on classical genetics, cell biology and functional genomics; expanded the annotation of closely related nematodes with a new genome browser for Caenorhabditis remanei; and deployed new hardware for stronger performance. Several existing datasets including phenotype descriptions and RNAi experiments have seen a large increase in new content. New datasets such as the C.remanei draft assembly and annotations, the Vancouver Fosmid library and TEC-RED 5′ end sites are now available as well. Access to and searching WormBase has become more dependable and flexible via multiple mirror sites and indexing through Google.


Nucleic Acids Research | 2015

Helminth.net: expansions to Nematode.net and an introduction to Trematode.net

John Martin; Bruce A. Rosa; Philip Ozersky; Kymberlie Hallsworth-Pepin; Xu Zhang; Veena Bhonagiri-Palsikar; Rahul Tyagi; Qi Wang; Young-Jun Choi; Xin Gao; Samantha N. McNulty; Paul J. Brindley; Makedonka Mitreva

Helminth.net (http://www.helminth.net) is the new moniker for a collection of databases: Nematode.net and Trematode.net. Within this collection we provide services and resources for parasitic roundworms (nematodes) and flatworms (trematodes), collectively known as helminths. For over a decade we have provided resources for studying nematodes via our veteran site Nematode.net (http://nematode.net). In this article, (i) we provide an update on the expansions of Nematode.net that hosts omics data from 84 species and provides advanced search tools to the broad scientific community so that data can be mined in a useful and user-friendly manner and (ii) we introduce Trematode.net, a site dedicated to the dissemination of data from flukes, flatworm parasites of the class Trematoda, phylum Platyhelminthes. Trematode.net is an independent component of Helminth.net and currently hosts data from 16 species, with information ranging from genomic, functional genomic data, enzymatic pathway utilization to microbiome changes associated with helminth infections. The databases’ interface, with a sophisticated query engine as a backbone, is intended to allow users to search for multi-factorial combinations of species’ omics properties. This report describes updates to Nematode.net since its last description in NAR, 2012, and also introduces and presents its new sibling site, Trematode.net.


Nature microbiology | 2017

Genomic diversity in Onchocerca volvulus and its Wolbachia endosymbiont.

Young-Jun Choi; Rahul Tyagi; Samantha N. McNulty; Bruce A. Rosa; Philip Ozersky; John Martin; Kymberlie Hallsworth-Pepin; Thomas R. Unnasch; Carmelle T. Norice; Thomas B. Nutman; Gary J. Weil; Peter U. Fischer; Makedonka Mitreva

Ongoing elimination efforts have altered the global distribution of Onchocerca volvulus, the agent of river blindness, and further population restructuring is expected as efforts continue. Therefore, a better understanding of population genetic processes and their effect on biogeography is needed to support elimination goals. We describe O. volvulus genome variation in 27 isolates from the early 1990s (before widespread mass treatment) from four distinct locales: Ecuador, Uganda, the West African forest and the West African savanna. We observed genetic substructuring between Ecuador and West Africa and between the West African forest and savanna bioclimes, with evidence of unidirectional gene flow from savanna to forest strains. We identified forest:savanna-discriminatory genomic regions and report a set of ancestry informative loci that can be used to differentiate between forest, savanna and admixed isolates, which has not previously been possible. We observed mito-nuclear discordance possibly stemming from incomplete lineage sorting. The catalogue of the nuclear, mitochondrial and endosymbiont DNA variants generated in this study will support future basic and translational onchocerciasis research, with particular relevance for ongoing control programmes, and boost efforts to characterize drug, vaccine and diagnostic targets.


Biotechnology Advances | 2015

Cracking the nodule worm code advances knowledge of parasite biology and biotechnology to tackle major diseases of livestock

Rahul Tyagi; Anja Joachim; Bärbel Ruttkowski; Bruce A. Rosa; John Martin; Kymberlie Hallsworth-Pepin; Xu Zhang; Philip Ozersky; Richard Wilson; Shoba Ranganathan; Paul W. Sternberg; Robin B. Gasser; Makedonka Mitreva

Many infectious diseases caused by eukaryotic pathogens have a devastating, long-term impact on animal health and welfare. Hundreds of millions of animals are affected by parasitic nematodes of the order Strongylida. Unlocking the molecular biology of representatives of this order, and understanding nematode-host interactions, drug resistance and disease using advanced technologies could lead to entirely new ways of controlling the diseases that they cause. Oesophagostomum dentatum (nodule worm; superfamily Strongyloidea) is an economically important strongylid nematode parasite of swine worldwide. The present article reports recent advances made in biology and animal biotechnology through the draft genome and developmental transcriptome of O. dentatum, in order to support biological research of this and related parasitic nematodes as well as the search for new and improved interventions. This first genome of any member of the Strongyloidea is 443 Mb in size and predicted to encode 25,291 protein-coding genes. Here, we review the dynamics of transcription throughout the life cycle of O. dentatum, describe double-stranded RNA interference (RNAi) machinery and infer molecules involved in development and reproduction, and in inducing or modulating immune responses or disease. The secretome predicted for O. dentatum is particularly rich in peptidases linked to interactions with host tissues and/or feeding activity, and a diverse array of molecules likely involved in immune responses. This research progress provides an important resource for future comparative genomic and molecular biological investigations as well as for biotechnological research toward new anthelmintics, vaccines and diagnostic tests.

Collaboration


Dive into the Philip Ozersky's collaboration.

Top Co-Authors

Avatar

Tamberlyn Bieri

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Cecilia Nakamura

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Hans-Michael Müller

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Juancarlos Chan

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Kimberly Van Auken

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Paul H. Davis

University of Nebraska Omaha

View shared research outputs
Top Co-Authors

Avatar

Ranjana Kishore

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Raymond Y. N. Lee

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Todd W. Harris

Cold Spring Harbor Laboratory

View shared research outputs
Top Co-Authors

Avatar

Wen J. Chen

California Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge