Paul I. Ro
North Carolina State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Paul I. Ro.
Journal of the Acoustical Society of America | 2002
Byoung-Gook Loh; Sinjae Hyun; Paul I. Ro; Clement Kleinstreuer
Acoustic streaming induced by ultrasonic flexural vibrations and the associated convection enhancement are investigated. Acoustic streaming pattern, streaming velocity, and associated heat transfer characteristics are experimentally observed. Moreover, analytical analysis based on Nyborgs formulation is performed along with computational fluid dynamics (CFD) simulation using a numerical solver CFX 4.3. Two distinctive acoustic streaming patterns in half-wavelength of the flexural vibrations are observed, which agree well with the theory. However, acoustic streaming velocities obtained from CFD simulation, based on the incompressible flow assumption, exceed the theoretically estimated velocity by a factor ranging from 10 to 100, depending upon the location along the beam. Both CFD simulation and analytical analysis reveal that the acoustic streaming velocity is proportional to the square of the vibration amplitude and the wavelength of the vibrating beam that decreases with the excitation frequency. It is observed that the streaming velocity decreases with the excitation frequency. Also, with an open-ended channel, a substantial increase in streaming velocity is observed from CFD simulations. Using acoustic streaming, a temperature drop of 40 degrees C with a vibration amplitude of 25 microm at 28.4 kHz is experimentally achieved.
Proceedings of the Institution of Mechanical Engineers. Part D, Journal of automobile engineering | 1998
Chul Kim; Paul I. Ro
Abstract In this paper, the control of an active suspension system using a quarter car model has been investigated. Due to the presence of non-linearities such as a hardening spring, a quadratic damping force and the ‘tyre lift-off’ phenomenon in a real suspension system, it is very difficult to achieve desired performance using linear control techniques. To ensure robustness for a wide range of operating conditions, a sliding mode controller has been designed and compared with an existing nonlinear adaptive control scheme in the literature. The sliding mode scheme utilizes a variant of a sky-hook damper system as a reference model which does not require real-time measurement of road input. The robustness of the scheme is investigated through computer simulation, and the efficacy of the scheme is shown both in time and frequency domains. In particular, when the vertical load to the sprung mass is changed, the sliding mode control resumes normal operation faster than the nonlinear self-tuning control and the passive system by factors of 3 and 6, respectively, and suspension deflection is kept to a minimum. Other results showed advantages of the sliding mode control scheme in a quarter car system with realistic non-linearities.
Precision Engineering-journal of The International Societies for Precision Engineering and Nanotechnology | 2000
Paul I. Ro; Wonbo Shim; Sanghwa Jeong
Ball-screw-driven slide systems are largely used in industry for motion control applications. Their performance using standard proportional-integral-derivative (PID) control algorithm is unsatisfactory in submicrometer motion control because of nonlinear friction effects. In this article, controllers based on a bristle-type nonlinear contact model are developed and implemented for submicrometer motion. For submicrometer positioning, a proportional-derivative (PD) control scheme with a nonlinear friction estimate algorithm is developed, and its performance is compared with that of a PID controller. For tracking, a disturbance observer was added to reject external disturbances and to improve robustness. The experimental results indicate that the proposed controller has consistent performance in positioning with under 1.5% of steady-state error in the submicrometer range. For tracking performance, the proposed controller shows good and robust tracking with respect to parameter variation.
IEEE Transactions on Industrial Electronics | 1998
Hector Gutierrez; Paul I. Ro
Magnetic servo levitation (MSL) is currently being investigated as an alternative to drive fast-tool servo systems that could overcome the range limitations inherent to piezoelectric driven devices while operating over a wide bandwidth. To control such systems, a feedback-linearized controller coupled with a Kalman filter has been previously described. Performance limitations that degrade tracking accuracy suggest the use of a more robust controller design approach, such as sliding-mode control. Current literature on sliding mode deals almost exclusively with systems that are affine on the input, while the magnetic fast-tool servo is nonlinear on it when the control action is current command. This paper discusses a sliding mode-based controller that overcomes the aforementioned problem by defining a modified sliding condition to calculate control action. Experimental results demonstrate the feasibility of achieving long-range fast tracking with magnetically levitated devices by using sliding-mode control.
Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering | 1999
Chul Kim; Paul I. Ro; H Y Kim
Abstract This paper examines the uncertainties in modelling a real suspension system that are due to the effect of suspension linkage layout (or structure) on the equivalent suspension parameters of a corresponding mathematical model. In most research on active suspension systems, a quarter-car model of two masses is very often used. However, without considering the influence of the suspension kinematic structure, the simple model may not be as effective as might be expected because of the uncertainties in the suspension parameters. Two sets of identified parameters for different suspension systems are compared to show the effect of suspension structure on the equivalent parameters. The relationships between specific parameters and changes in certain suspension linkage layouts are also investigated. The benefits of the parameter identification are demonstrated in the process of designing two active systems (one using a sky-hook control law and the other using a sliding mode control technique). The results show that suspension structure has a strong effect on the equivalent suspension parameters and this relationship becomes more important as the structure of suspension increases in complexity. The advantage of the identification process is crucial in designing both linear and non-linear active suspension systems.
IEEE Transactions on Industrial Electronics | 2005
Hector Gutierrez; Paul I. Ro
Magnetic Servo Levitation (MSL) is an important actuation principle with potential applications ranging from ultrahigh-precision positioning to high-speed rail systems. This paper describes a nonlinear controller design technique for MSL that has inherent robustness to both parametric uncertainties and unmodeled dynamics. Most of the currently available literature on sliding mode considers nonlinear systems that are linear (affine) in the input action. The proposed technique allows designing sliding-mode controllers for the family of nonaffine problems that have an input nonlinearity algebraically invertible with respect to the available control action. This differs from the standard approach of input feedback linearization, and is based on a modified sliding condition that can be used to synthesize a switching control law. An equivalent control term can also be included, substantially enhancing the performance of the controller. Experimental results show that the proposed technique can achieve excellent tracking at high speeds in a fast-tool servo system actuated by MSL.
IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control | 2000
Byoung-Gook Loh; Paul I. Ro
An object transport system using low amplitude and high frequency progressive waves generated by two-mode excitation is presented. A theoretical model for the system was developed using normal mode expansion and the modal participation factor. To identify the factors that affect the transport speed, the changes with the mass of objects on the beam, the input power, the phase difference, and the excitation frequency were experimentally investigated. With a power input of 40 W, a transport speed of 10 cm/s was obtained for an object weighing 30 g. The tests indicate that, not only the phase difference but also the excitation frequency, were the dominant factors in determining the transport speed and direction. Specifically, when the excitation frequency was chosen to be at the exact midpoint of the two modes, the object stopped moving. A slight change of frequency in either direction resulted in change of object transport direction. For actual factory application, a simple stop-go and tracking control using the General Purpose Interface Bus (GPIB) were implemented.
Journal of Mechanical Design | 2002
Chul Kim; Paul I. Ro
In this study, an approach to obtain an accurate yet simple model for full-vehicle ride analysis is proposed. The approach involves linearization of a full car MBD (multibody dynamics) model to obtain a large-order vehicle model. The states of the model are divided into two groups depending on their effects on the ride quality and handling performance. Singular perturbation method is then applied to reduce the model size. Comparing the responses of the proposed model and the original MBD model shows an accurate matching between the two systems. A set of identified parameters that makes the well-known seven degree-of-freedom model very close to the full car MBD model is obtained. Finally, the benefits of the approach are illustrated through design of an active suspension system. The identified model exhibits improved performance over the nominal models in the sense that the accurate model leads to the appropriate selection of control gains. This study also provides an analytical method to investigate the effects of model complexity on model accuracy for vehicle suspension systems.
Fuzzy Sets and Systems | 2000
Dug Hun Hong; Paul I. Ro
We study laws of large numbers for mutually T-related fuzzy numbers with unbounded supports where T is an Archimedean t-norm and generalize earlier result of Badard.
Smart Materials and Structures | 2004
Tao Wu; Paul I. Ro
An analytical prediction of dynamic performance for piezoelectric bimorph structures was investigated. A damping ratio was assumed and employed to determine dynamic peak amplitudes at resonances by finding the frequency with of the peak amplitude. Finite element simulations were used to validate the proposed improvement strategy. Results show that the peak amplitude determination method is good enough to predict the dynamic performance of piezoelectric bimorphs. The effects of bonding layers were also analysed by both static and dynamic methods. The bonding influence can be minimized by selecting appropriate bonding materials and dimensions of structures.