Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paul J. Gallins is active.

Publication


Featured researches published by Paul J. Gallins.


Nature Genetics | 2014

Heritability and genomics of gene expression in peripheral blood

Fred A. Wright; Patrick F. Sullivan; Andrew I. Brooks; Fei Zou; Wei Sun; Kai Xia; Vered Madar; Rick Jansen; Wonil Chung; Yi Hui Zhou; Abdel Abdellaoui; Sandra Batista; Casey Butler; Guanhua Chen; Ting-huei Chen; David B. D'Ambrosio; Paul J. Gallins; Min Jin Ha; Jouke-Jan Hottenga; Shunping Huang; Mathijs Kattenberg; Jaspreet Kochar; Christel M. Middeldorp; Ani Qu; Andrey A. Shabalin; Jay A. Tischfield; Laura Todd; Jung-Ying Tzeng; Gerard van Grootheest; Jacqueline M. Vink

We assessed gene expression profiles in 2,752 twins, using a classic twin design to quantify expression heritability and quantitative trait loci (eQTLs) in peripheral blood. The most highly heritable genes (∼777) were grouped into distinct expression clusters, enriched in gene-poor regions, associated with specific gene function or ontology classes, and strongly associated with disease designation. The design enabled a comparison of twin-based heritability to estimates based on dizygotic identity-by-descent sharing and distant genetic relatedness. Consideration of sampling variation suggests that previous heritability estimates have been upwardly biased. Genotyping of 2,494 twins enabled powerful identification of eQTLs, which we further examined in a replication set of 1,895 unrelated subjects. A large number of non-redundant local eQTLs (6,756) met replication criteria, whereas a relatively small number of distant eQTLs (165) met quality control and replication standards. Our results provide a new resource toward understanding the genetic control of transcription.


Nature Communications | 2015

Genome-wide association meta-analysis identifies five modifier loci of lung disease severity in cystic fibrosis

Harriet Corvol; Scott M. Blackman; Pierre-Yves Boëlle; Paul J. Gallins; Rhonda G. Pace; Jaclyn R. Stonebraker; Frank J. Accurso; Annick Clement; Joseph M. Collaco; Hong Dang; Anthony T. Dang; Arianna L Franca; Jiafen Gong; Loïc Guillot; Katherine Keenan; Weili Li; Fan Lin; Michael V. Patrone; Karen S. Raraigh; Lei Sun; Yi Hui Zhou; Wanda K. Wanda; Marci K. Sontag; Hara Levy; Peter R. Durie; Johanna M. Rommens; Mitchell L. Drumm; Fred A. Wright; Lisa J. Strug; Garry R. Cutting

The identification of small molecules that target specific CFTR variants has ushered in a new era of treatment for cystic fibrosis (CF), yet optimal, individualized treatment of CF will require identification and targeting of disease modifiers. Here we use genome-wide association analysis to identify genetic modifiers of CF lung disease, the primary cause of mortality. Meta-analysis of 6,365 CF patients identifies five loci that display significant association with variation in lung disease. Regions on chr3q29 (MUC4/MUC20; P=3.3 × 10−11), chr5p15.3 (SLC9A3; P=6.8 × 10−12), chr6p21.3 (HLA Class II; P=1.2 × 10−8) and chrXq22-q23 (AGTR2/SLC6A14; P=1.8 × 10−9) contain genes of high biological relevance to CF pathophysiology. The fifth locus, on chr11p12-p13 (EHF/APIP; P=1.9 × 10−10), was previously shown to be associated with lung disease. These results provide new insights into potential targets for modulating lung disease severity in CF.


Environmental Health Perspectives | 2015

Population-Based in Vitro Hazard and Concentration–Response Assessment of Chemicals: The 1000 Genomes High-Throughput Screening Study

Nour Abdo; Menghang Xia; Chad Brown; Oksana Kosyk; Ruili Huang; Srilatha Sakamuru; Yi Hui Zhou; John Jack; Paul J. Gallins; Kai Xia; Yun Li; Weihsueh A. Chiu; Alison A. Motsinger-Reif; Christopher P. Austin; Raymond R. Tice; Ivan Rusyn; Fred A. Wright

Background: Understanding of human variation in toxicity to environmental chemicals remains limited, so human health risk assessments still largely rely on a generic 10-fold factor (10½ each for toxicokinetics and toxicodynamics) to account for sensitive individuals or subpopulations. Objectives: We tested a hypothesis that population-wide in vitro cytotoxicity screening can rapidly inform both the magnitude of and molecular causes for interindividual toxicodynamic variability. Methods: We used 1,086 lymphoblastoid cell lines from the 1000 Genomes Project, representing nine populations from five continents, to assess variation in cytotoxic response to 179 chemicals. Analysis included assessments of population variation and heritability, and genome-wide association mapping, with attention to phenotypic relevance to human exposures. Results: For about half the tested compounds, cytotoxic response in the 1% most “sensitive” individual occurred at concentrations within a factor of 10½ (i.e., approximately 3) of that in the median individual; however, for some compounds, this factor was > 10. Genetic mapping suggested important roles for variation in membrane and transmembrane genes, with a number of chemicals showing association with SNP rs13120371 in the solute carrier SLC7A11, previously implicated in chemoresistance. Conclusions: This experimental approach fills critical gaps unaddressed by recent large-scale toxicity testing programs, providing quantitative, experimentally based estimates of human toxicodynamic variability, and also testable hypotheses about mechanisms contributing to interindividual variation. Citation: Abdo N, Xia M, Brown CC, Kosyk O, Huang R, Sakamuru S, Zhou YH, Jack JR, Gallins P, Xia K, Li Y, Chiu WA, Motsinger-Reif AA, Austin CP, Tice RR, Rusyn I, Wright FA. 2015. Population-based in vitro hazard and concentration–response assessment of chemicals: the 1000 Genomes high-throughput screening study. Environ Health Perspect 123:458–466; http://dx.doi.org/10.1289/ehp.1408775


PLOS Genetics | 2016

Genomic Characterization of Metformin Hepatic Response

Marcelo R. Luizon; Walter L. Eckalbar; Yao Wang; Stacy L. Jones; Robin P. Smith; Megan Laurance; Lawrence Lin; Paul J. Gallins; Amy S. Etheridge; Fred A. Wright; Yi Hui Zhou; Cliona Molony; Federico Innocenti; Sook Wah Yee; Kathleen M. Giacomini; Nadav Ahituv

Metformin is used as a first-line therapy for type 2 diabetes (T2D) and prescribed for numerous other diseases. However, its mechanism of action in the liver has yet to be characterized in a systematic manner. To comprehensively identify genes and regulatory elements associated with metformin treatment, we carried out RNA-seq and ChIP-seq (H3K27ac, H3K27me3) on primary human hepatocytes from the same donor treated with vehicle control, metformin or metformin and compound C, an AMP-activated protein kinase (AMPK) inhibitor (allowing to identify AMPK-independent pathways). We identified thousands of metformin responsive AMPK-dependent and AMPK-independent differentially expressed genes and regulatory elements. We functionally validated several elements for metformin-induced promoter and enhancer activity. These include an enhancer in an ataxia telangiectasia mutated (ATM) intron that has SNPs in linkage disequilibrium with a metformin treatment response GWAS lead SNP (rs11212617) that showed increased enhancer activity for the associated haplotype. Expression quantitative trait locus (eQTL) liver analysis and CRISPR activation suggest that this enhancer could be regulating ATM, which has a known role in AMPK activation, and potentially also EXPH5 and DDX10, its neighboring genes. Using ChIP-seq and siRNA knockdown, we further show that activating transcription factor 3 (ATF3), our top metformin upregulated AMPK-dependent gene, could have an important role in gluconeogenesis repression. Our findings provide a genome-wide representation of metformin hepatic response, highlight important sequences that could be associated with interindividual variability in glycemic response to metformin and identify novel T2D treatment candidates.


American Journal of Respiratory Cell and Molecular Biology | 2015

Polymorphisms Associated with Expression of BPIFA1/BPIFB1 and Lung Disease Severity in Cystic Fibrosis

Aabida Saferali; Ma’en Obeidat; Jean-Christophe Bérubé; Maxime Lamontagne; Yohan Bossé; Michel Laviolette; Ke Hao; David C. Nickle; Wim Timens; Don D. Sin; Dirkje S. Postma; Lisa J. Strug; Paul J. Gallins; Peter D. Paré; Colin D. Bingle; Andrew J. Sandford

BPI fold containing family A, member 1 (BPIFA1) and BPIFB1 are putative innate immune molecules expressed in the upper airways. Because of their hypothesized roles in airway defense, these molecules may contribute to lung disease severity in cystic fibrosis (CF). We interrogated BPIFA1/BPIFB1 single-nucleotide polymorphisms in data from an association study of CF modifier genes and found an association of the G allele of rs1078761 with increased lung disease severity (P = 2.71 × 10(-4)). We hypothesized that the G allele of rs1078761 is associated with decreased expression of BPIFA1 and/or BPIFB1. Genome-wide lung gene expression and genotyping data from 1,111 individuals with lung disease, including 51 patients with CF, were tested for associations between genotype and BPIFA1 and BPIFB1 gene expression levels. Findings were validated by quantitative PCR in a subset of 77 individuals. Western blotting was used to measure BPIFA1 and BPIFB1 protein levels in 93 lung and 101 saliva samples. The G allele of rs1078761 was significantly associated with decreased mRNA levels of BPIFA1 (P = 4.08 × 10(-15)) and BPIFB1 (P = 0.0314). These findings were confirmed with quantitative PCR and Western blotting. We conclude that the G allele of rs1078761 may be detrimental to lung function in CF owing to decreased levels of BPIFA1 and BPIFB1.


Toxicological Sciences | 2017

Editor’s Highlight: Comparative Dose-Response Analysis of Liver and Kidney Transcriptomic Effects of Trichloroethylene and Tetrachloroethylene in B6C3F1 Mouse

Yi Hui Zhou; Joseph A. Cichocki; Valerie Y. Soldatow; Elizabeth H. Scholl; Paul J. Gallins; Dereje D. Jima; Hong-Sik Yoo; Weihsueh A. Chiu; Fred A. Wright; Ivan Rusyn

Trichloroethylene (TCE) and tetrachloroethylene (PCE) are ubiquitous environmental contaminants and occupational health hazards. Recent health assessments of these agents identified several critical data gaps, including lack of comparative analysis of their effects. This study examined liver and kidney effects of TCE and PCE in a dose-response study design. Equimolar doses of TCE (24, 80, 240, and 800 mg/kg) or PCE (30, 100, 300, and 1000 mg/kg) were administered by gavage in aqueous vehicle to male B6C3F1/J mice. Tissues were collected 24 h after exposure. Trichloroacetic acid (TCA), a major oxidative metabolite of both compounds, was measured and RNA sequencing was performed. PCE had a stronger effect on liver and kidney transcriptomes, as well as greater concentrations of TCA. Most dose-responsive pathways were common among chemicals/tissues, with the strongest effect on peroxisomal β-oxidation. Effects on liver and kidney mitochondria-related pathways were notably unique to PCE. We performed dose-response modeling of the transcriptomic data and compared the resulting points of departure (PODs) to those for apical endpoints derived from long-term studies with these chemicals in rats, mice, and humans, converting to human equivalent doses using tissue-specific dosimetry models. Tissue-specific acute transcriptional effects of TCE and PCE occurred at human equivalent doses comparable to those for apical effects. These data are relevant for human health assessments of TCE and PCE as they provide data for dose-response analysis of the toxicity mechanisms. Additionally, they provide further evidence that transcriptomic data can be useful surrogates for in vivo PODs, especially when toxicokinetic differences are taken into account.


Human genome variation | 2016

Novel variation at chr11p13 associated with cystic fibrosis lung disease severity

Hong Dang; Paul J. Gallins; Rhonda G. Pace; Xueliang Guo; Jaclyn R. Stonebraker; Harriet Corvol; Garry R. Cutting; Mitchell L. Drumm; Lisa J. Strug; Wanda K. O’Neal

Published genome-wide association studies (GWASs) identified an intergenic region with regulatory features on chr11p13 associated with cystic fibrosis (CF) lung disease severity. Targeted resequencing in n=377, followed by imputation to n=6,365 CF subjects, was used to identify unrecognized genetic variants (including indels and microsatellite repeats) associated with phenotype. Highly significant associations were in strong linkage disequilibrium and were seen only in Phe508del homozygous CF subjects, indicating a CFTR genotype-specific mechanism.


American Journal of Respiratory and Critical Care Medicine | 2018

Airway Mucosal Host Defense Is Key to Genomic Regulation of Cystic Fibrosis Lung Disease Severity

Deepika Polineni; Hong Dang; Paul J. Gallins; Lisa C. Jones; Rhonda G. Pace; Jaclyn R. Stonebraker; Leah Commander; Jeanne E. Krenicky; Yi Hui Zhou; Harriet Corvol; Garry R. Cutting; Mitchell L. Drumm; Lisa J. Strug; Michael P. Boyle; Peter R. Durie; James F. Chmiel; Fei Zou; Fred A. Wright; Wanda K. O’Neal

Rationale: The severity of cystic fibrosis (CF) lung disease varies widely, even for Phe508del homozygotes. Heritability studies show that more than 50% of the variability reflects non‐cystic fibrosis transmembrane conductance regulator (CFTR) genetic variation; however, the full extent of the pertinent genetic variation is not known. Objectives: We sought to identify novel CF disease‐modifying mechanisms using an integrated approach based on analyzing “in vivo” CF airway epithelial gene expression complemented with genome‐wide association study (GWAS) data. Methods: Nasal mucosal RNA from 134 patients with CF was used for RNA sequencing. We tested for associations of transcriptomic (gene expression) data with a quantitative phenotype of CF lung disease severity. Pathway analysis of CF GWAS data (n = 5,659 patients) was performed to identify novel pathways and assess the concordance of genomic and transcriptomic data. Association of gene expression with previously identified CF GWAS risk alleles was also tested. Measurements and Main Results: Significant evidence of heritable gene expression was identified. Gene expression pathways relevant to airway mucosal host defense were significantly associated with CF lung disease severity, including viral infection, inflammation/inflammatory signaling, lipid metabolism, apoptosis, ion transport, Phe508del CFTR processing, and innate immune responses, including HLA (human leukocyte antigen) genes. Ion transport and CFTR processing pathways, as well as HLA genes, were identified across differential gene expression and GWAS signals. Conclusions: Transcriptomic analyses of CF airway epithelia, coupled to genomic (GWAS) analyses, highlight the role of heritable host defense variation in determining the pathophysiology of CF lung disease. The identification of these pathways provides opportunities to pursue targeted interventions to improve CF lung health.


Stat | 2018

A zero-inflated beta-binomial model for microbiome data analysis: ZIBB

Tao Hu; Paul J. Gallins; Yi Hui Zhou

The microbiome is increasingly recognized as an important aspect of the health of host species, involved in many biological pathways and processes and potentially useful as health biomarkers. Taking advantage of high-throughput sequencing technologies, modern bacterial microbiome studies are metagenomic, interrogating thousands of taxa simultaneously. Several data analysis frameworks have been proposed for microbiome sequence read count data and determining the most significant features. However, there is still room for improvement. We introduce a zero-inflated beta-binomial (ZIBB) to model the distribution of microbiome count data and to determine association with a continuous or categorical phenotype of interest. The approach can exploit mean-variance relationships to improve power and adjust for covariates. The proposed method is a mixture model with two components: (i) a zero model accounting for excess zeros and (ii) a count model to capture the remaining component by beta-binomial regression, allowing for overdispersion effects. Simulation studies show that our proposed method effectively controls type I error and has higher power than competing methods to detect taxa associated with phenotype. An R package ZIBBSeqDiscovery is available on R CRAN.


Cell Reports | 2018

A Common Allele in FGF21 Associated with Sugar Intake Is Associated with Body Shape, Lower Total Body-Fat Percentage, and Higher Blood Pressure.

Timothy M. Frayling; Robin N. Beaumont; Samuel E. Jones; Hanieh Yaghootkar; Marcus A. Tuke; Katherine S. Ruth; Francesco Casanova; Ben West; Jonathan M. Locke; Seth Sharp; Yingjie Ji; William Thompson; Jamie Harrison; Amy S. Etheridge; Paul J. Gallins; Dereje D. Jima; Fred A. Wright; Yi Hui Zhou; Federico Innocenti; Cecilia M. Lindgren; Niels Grarup; Anna Murray; Rachel M. Freathy; Michael N. Weedon; Jessica Tyrrell; Andrew R. Wood

Summary Fibroblast growth factor 21 (FGF21) is a hormone that has insulin-sensitizing properties. Some trials of FGF21 analogs show weight loss and lipid-lowering effects. Recent studies have shown that a common allele in the FGF21 gene alters the balance of macronutrients consumed, but there was little evidence of an effect on metabolic traits. We studied a common FGF21 allele (A:rs838133) in 451,099 people from the UK Biobank study, aiming to use the human allele to inform potential adverse and beneficial effects of targeting FGF21. We replicated the association between the A allele and higher percentage carbohydrate intake. We then showed that this allele is more strongly associated with higher blood pressure and waist-hip ratio, despite an association with lower total body-fat percentage, than it is with BMI or type 2 diabetes. These human phenotypes of variation in the FGF21 gene will inform research into FGF21’s mechanisms and therapeutic potential.

Collaboration


Dive into the Paul J. Gallins's collaboration.

Top Co-Authors

Avatar

Yi Hui Zhou

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

Fred A. Wright

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

Garry R. Cutting

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Hong Dang

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Jaclyn R. Stonebraker

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Mitchell L. Drumm

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Rhonda G. Pace

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wanda K. O’Neal

University of North Carolina at Chapel Hill

View shared research outputs
Researchain Logo
Decentralizing Knowledge