Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paul J. MacFarlan is active.

Publication


Featured researches published by Paul J. MacFarlan.


Archive | 2009

Filtration and Leach Testing for REDOX Sludge and S-Saltcake Actual Waste Sample Composites

Rick W. Shimskey; Justin M. Billing; Edgar C. Buck; Richard C. Daniel; Kathryn E. Draper; Matthew K. Edwards; John Gh Geeting; Richard T. Hallen; Evan D. Jenson; Anne E. Kozelisky; Paul J. MacFarlan; Reid A. Peterson; Lanee A. Snow; Robert G. Swoboda

A testing program evaluating actual tank waste was developed in response to Task 4 from the M-12 External Flowsheet Review Team (EFRT) issue response plan.( ) The test program was subdivided into logical increments. The bulk water-insoluble solid wastes that are anticipated to be delivered to the Waste Treatment and Immobilization Plant (WTP) were identified according to type such that the actual waste testing could be targeted to the relevant categories. Under test plan TP-RPP-WTP-467, eight broad waste groupings were defined. Samples available from the 222S archive were identified and obtained for testing. Under this test plan, a waste-testing program was implemented that included: • Homogenizing the archive samples by group as defined in the test plan • Characterizing the homogenized sample groups • Performing parametric leaching testing on each group for compounds of interest • Performing bench-top filtration/leaching tests in the hot cell for each group to simulate filtration and leaching activities if they occurred in the UFP2 vessel of the WTP Pretreatment Facility. This report focuses on filtration/leaching tests performed on two of the eight waste composite samples and follow-on parametric tests to support aluminum leaching results from those tests.


Archive | 2009

Characterization and Leach Testing for PUREX Cladding Waste Sludge (Group 3) and REDOX Cladding Waste Sludge (Group 4) Actual Waste Sample Composites

Lanee A. Snow; Edgar C. Buck; Amanda J. Casella; Jarrod V. Crum; Richard C. Daniel; Kathryn E. Draper; Matthew K. Edwards; Sandra K. Fiskum; Lynette K. Jagoda; Evan D. Jenson; Anne E. Kozelisky; Paul J. MacFarlan; Reid A. Peterson; Robert G. Swoboda

A testing program evaluating actual tank waste was developed in response to Task 4 from the M-12 External Flowsheet Review Team (EFRT) issue response plan.(a) The testing program was subdivided into logical increments. The bulk water-insoluble solid wastes that are anticipated to be delivered to the Waste Treatment and Immobilization Plant (WTP) were identified according to type such that the actual waste testing could be targeted to the relevant categories. Eight broad waste groupings were defined. Samples available from the 222S archive were identified and obtained for testing. The actual wastetesting program included homogenizing the samples by group, characterizing the solids and aqueous phases, and performing parametric leaching tests. Two of the eight defined groups—plutonium-uranium extraction (PUREX) cladding waste sludge (Group 3, or CWP) and reduction-oxidation (REDOX) cladding waste sludge (Group 4, or CWR)—are the subjects of this report. Both the Group 3 and 4 waste composites were anticipated to be high in gibbsite, requiring caustic leaching. Characterization of the composite Group 3 and Group 4 waste samples confirmed them to be high in gibbsite. The focus of the Group 3 and 4 testing was on determining the behavior of gibbsite during caustic leaching. The waste-type definition, archived sample conditions, homogenization activities, characterization (physical, chemical, radioisotope, and crystal habit), and caustic leaching behavior as functions of time, temperature, and hydroxide concentration are discussed in this report. Testing was conducted according to TP-RPP-WTP-467.


Archive | 2009

Filtration and Leach Testing for PUREX Cladding Sludge and REDOX Cladding Sludge Actual Waste Sample Composites

Rick W. Shimskey; Justin M. Billing; Edgar C. Buck; Amanda J. Casella; Jarrod V. Crum; Richard C. Daniel; Kathryn E. Draper; Matthew K. Edwards; Richard T. Hallen; Anne E. Kozelisky; Paul J. MacFarlan; Reid A. Peterson; Robert G. Swoboda

A testing program evaluating actual tank waste was developed in response to Task 4 from the M-12 External Flowsheet Review Team (EFRT) issue response plan (Barnes and Voke 2006). The test program was subdivided into logical increments. The bulk water-insoluble solid wastes that are anticipated to be delivered to the Hanford Waste Treatment and Immobilization Plant (WTP) were identified according to type such that the actual waste testing could be targeted to the relevant categories. Under test plan TP RPP WTP 467 (Fiskum et al. 2007), eight broad waste groupings were defined. Samples available from the 222S archive were identified and obtained for testing. Under this test plan, a waste testing program was implemented that included: • Homogenizing the archive samples by group as defined in the test plan. • Characterizing the homogenized sample groups. • Performing parametric leaching testing on each group for compounds of interest. • Performing bench-top filtration/leaching tests in the hot cell for each group to simulate filtration and leaching activities if they occurred in the UFP2 vessel of the WTP Pretreatment Facility. This report focuses on a filtration/leaching test performed using two of the eight waste composite samples. The sample groups examined in this report were the plutonium-uranium extraction (PUREX) cladding waste sludge (Group 3, or CWP) and reduction-oxidation (REDOX) cladding waste sludge (Group 4, or CWR). Both the Group 3 and 4 waste composites were anticipated to be high in gibbsite, thus requiring caustic leaching. WTP RPT 167 (Snow et al. 2008) describes the homogenization, characterization, and parametric leaching activities before benchtop filtration/leaching testing of these two waste groups. Characterization and initial parametric data in that report were used to plan a single filtration/leaching test using a blend of both wastes. The test focused on filtration testing of the waste and caustic leaching for aluminum, in the form of gibbsite, and its impact on filtration. The initial sample was diluted with a liquid simulant to simulate the receiving concentration of retrieved tank waste into the UFP2 vessel (< 10 wt% undissolved solids). Filtration testing was performed on the dilute waste sample and dewatered to a higher solids concentration. Filtration testing was then performed on the concentrated slurry. Afterwards, the slurry was caustic leached to remove aluminum present in the undissolved solid present in the waste. The leach was planned to simulate leaching conditions in the UFP2 vessel. During the leach, slurry supernate samples were collected to measure the dissolution rate of aluminum in the waste. After the slurry cooled down from the elevated leach temperature, the leach liquor was dewatered from the solids. The remaining slurry was rinsed and dewatered with caustic solutions to remove a majority of the dissolved aluminum from the leached slurry. The concentration of sodium hydroxide in the rinse solutions was high enough to maintain the solubility of the aluminum in the dewatered rinse solutions after dilution of the slurry supernate. Filtration tests were performed on the final slurry to compare to filtration performance before and after caustic leaching.


ASME 2011 Pressure Vessels and Piping Conference: Volume 5 | 2011

Ultrasonic Phased Array Evaluation of Control Rod Drive Mechanism (CRDM) Nozzle Interference Fit and Weld Region

Anthony D. Cinson; Susan L. Crawford; Paul J. MacFarlan; Royce Mathews; Brady D. Hanson; Aaron A. Diaz

Ultrasonic phased array data were collected on a removed-from-service CRDM nozzle specimen to assess a previously reported leak path. First a mock-up CRDM specimen was evaluated that contained two 0.076-mm (3.0-mil) interference fit regions formed from an actual Inconel CRDM tube and two 152.4-mm (6.0-in.) thick carbon steel blocks [1,2]. One interference fit region has a series of precision crafted electric discharge machining (EDM) notches at various lengths, widths, depths, and spatial separations for establishing probe sensitivity, resolution and calibration. The other interference fit has zones of boric acid (crystal form) spaced periodically between the tube and block to represent an actively leaking CRDM nozzle assembly in the field. Ultrasonic phased-array evaluations were conducted using an immersion 8-element annular 5.0-MHz probe from the tube inner diameter (ID). A variety of focal laws were employed to evaluate the interference fit regions and J-grove weld, where applicable. Responses from the mock-up specimen were evaluated to determine detection limits and characterization ability as well as contrast the ultrasonic response differences with the presence of boric acid in the fit region. Nozzle 63, from the North Anna Unit-2 nuclear power plant, was evaluated to assess leakage path(s) and was destructively dismantled to allow a visual verification of the leak path(s).Copyright


Archive | 2010

Removing Phosphate from Hanford High-Phosphate Tank Wastes: FY 2010 Results

Gregg J. Lumetta; Jenifer C. Braley; Matthew K. Edwards; Odeta Qafoku; Andrew R. Felmy; Jennifer C. Carter; Paul J. MacFarlan

The U.S. Department of Energy (DOE) is responsible for environmental remediation at the Hanford Site in Washington State, a former nuclear weapons production site. Retrieving, processing, immobilizing, and disposing of the 2.2 × 105 m3 of radioactive wastes stored in the Hanford underground storage tanks dominates the overall environmental remediation effort at Hanford. The cornerstone of the tank waste remediation effort is the Hanford Tank Waste Treatment and Immobilization Plant (WTP). As currently designed, the capability of the WTP to treat and immobilize the Hanford tank wastes in the expected lifetime of the plant is questionable. For this reason, DOE has been pursuing supplemental treatment options for selected wastes. If implemented, these supplemental treatments will route certain waste components to processing and disposition pathways outside of WTP and thus will accelerate the overall Hanford tank waste remediation mission.


Archive | 2009

Characterization, Leaching, and Filtrations Testing of Ferrocyanide Tank sludge (Group 8) Actual Waste Composite

Sandra K. Fiskum; Justin M. Billing; Jarrod V. Crum; Richard C. Daniel; Matthew K. Edwards; Rick W. Shimskey; Reid A. Peterson; Paul J. MacFarlan; Edgar C. Buck; Kathryn E. Draper; Anne E. Kozelisky

This is the final report in a series of eight reports defining characterization, leach, and filtration testing of a wide variety of Hanford tank waste sludges. The information generated from this series is intended to supplement the Waste Treatment and Immobilization Plant (WTP) project understanding of actual waste behaviors associated with tank waste sludge processing through the pretreatment portion of the WTP. The work described in this report presents information on a high-iron waste form, specifically the ferrocyanide tank waste sludge. Iron hydroxide has been shown to pose technical challenges during filtration processing; the ferrocyanide tank waste sludge represented a good source of the high-iron matrix to test the filtration processing.


Other Information: Supercedes report DE00754519; PBD: 4 May 2000 | 2000

Polycube oxidation and factors affecting the concentrations of gaseous products

John Abrefah; Paul J. MacFarlan; Rachel L. Sell

The polycubes stored at the Hanford Plutonium Finishing Plant (PFP) have been identified in a Vulnerability Assessment as material that requires a stabilization process in support of the Defense Nuclear Facility Safety Board Recommendation 94-1. The baseline plan involves a pyrolysis process to separate out the plutonium and uranium oxides before the remaining material is packaged for interim storage, in accordance with the Record of Decision (ROD), issued June 25, 1996, for the Plutonium Finishing Plant Stabilization Final Environmental Impact Statement, DOE/EIS-0244-F. The polycubes were manufactured at Hanford in the 1960s for use in criticality studies to determine the hydrogen-to-fissile atom ratios for neutron moderation. A mixture of plutonium and/or uranium oxides and a polystyrene (vinyl benzene) matrix, cast into the shape of cubes, the polycubes simulated solutions containing high concentrations of fissile materials. The polycubes varied in size, typically 1/2 x 2 x 2 in. up to 2 x 2 x 2 in., and were sealed with a coating of aluminum paint and/or tape (PVC or Shurtape). The estimated 1,600 polycubes (calculated 179,165 grams net weight) stored at PFP were packed in vented food cans with five to eight cubes per can to accommodate gas generation by radiolysis. Some polycube containers are suspected to contain loose material as well, left over from the forming process. With a fairly high {sup 240}Pu content, polycubes present a challenge for handling, as a result of the 7 to 8 R contact dose rate. Significant hazards linked to unstabilized polycubes are associated with the polystyrene matrix, which generates hydrogen gas due to radiolysis. In addition, some cans of polycubes may contain fines. Because of insufficient data, hazards associated with the fines have not been assessed.


Archive | 2013

Optimization of Hydride Rim Formation in Unirradiated Zr 4 Cladding

Rick W. Shimskey; Brady D. Hanson; Paul J. MacFarlan

The purpose of this work is to build on the results reported in the M2 milestone M2FT 13PN0805051, document number FCRD-USED-2013-000151 (Hanson, 2013). In that work, it was demonstrated that unirradiated samples of zircaloy-4 cladding could be pre-hydrided at temperatures below 400°C in pure hydrogen gas and that the growth of hydrides on the surface could be controlled by changing the surface condition of the samples and form a desired hydride rim on the outside diameter of the cladding. The work performed at Pacific Northwest National Laboratory since the issuing of the M2 milestone has focused its efforts to optimize the formation of a hydride rim on available zircaloy-4 cladding samples by controlling temperature variation and gas flow control during pre-hydriding treatments. Surface conditioning of the outside surface was also examined as a variable. The results of test indicate that much of the variability in the hydride thickness is due to temperature variation occurring in the furnaces as well as how hydrogen gas flows across the sample surface. Efforts to examine other alloys, gas concentrations, and different surface conditioning plan to be pursed in the next FY as more cladding samples become available


MRS Proceedings | 2004

Effect of Gadolinium Doping on the Air Oxidation of Uranium Dioxide

Randall D. Scheele; Brady D. Hanson; Stephen E. Cumblidge; Evan D. Jenson; Anne E. Kozelisky; Rachel L. Sell; Paul J. MacFarlan; Lanee A. Snow

Researchers at the Pacific Northwest National Laboratory (PNNL) investigated the effects of gadolinia concentration on the air oxidization of gadolinia-doped uranium dioxide using thermogravimetry and differential scanning calorimetry to determine if such doping could improve uranium dioxides stability as a nuclear fuel during potential accident scenarios in a nuclear reactor or during long-term disposal. We undertook this study to determine whether the resistance of the uranium dioxide to oxidation to the orthorhombic U3O8 with its attendant crystal expansion could be prevented by addition of gadolinia. Our studies found that gadolinium has little effect on the thermal initiation of the first step of the reported two-step air oxidation of UO2; however, increasing gadolinia content does stabilize the initial tetragonal or cubic product allowing significant oxidation before the second expansive step to U3O8 begins.


Talanta | 2016

Uniform deposition of uranium hexafluoride (UF6): Standardized mass deposits and controlled isotopic ratios using a thermal fluorination method

Bruce K. McNamara; Matthew J. O’Hara; Andrew M. Casella; Jennifer C. Carter; R. Shane Addleman; Paul J. MacFarlan

We report a convenient method for the generation of volatile uranium hexafluoride (UF6) from solid uranium oxides and other U compounds, followed by uniform deposition of low levels of UF6 onto sampling coupons. Under laminar flow conditions, UF6 is shown to interact with surfaces within a fixed reactor geometry to a highly predictable degree. We demonstrate the preparation of U deposits that range between approximately 0.01 and 500ngcm(-2). The data suggest the method can be extended to creating depositions at the sub-picogramcm(-2) level. The isotopic composition of the deposits can be customized by selection of the U source materials and we demonstrate a layering technique whereby two U solids, each with a different isotopic composition, are employed to form successive layers of UF6 on a surface. The result is an ultra-thin deposit that bears an isotopic signature that is a composite of the two U sources. The reported deposition method has direct application to the development of unique analytical standards for nuclear safeguards and forensics. Further, the method allows access to very low atomic or molecular coverages of surfaces.

Collaboration


Dive into the Paul J. MacFarlan's collaboration.

Top Co-Authors

Avatar

Edgar C. Buck

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Matthew K. Edwards

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Richard C. Daniel

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Andrew M. Casella

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Rick W. Shimskey

Battelle Memorial Institute

View shared research outputs
Top Co-Authors

Avatar

Anne E. Kozelisky

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Amanda J. Casella

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Brady D. Hanson

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Reid A. Peterson

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Evan D. Jenson

Pacific Northwest National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge