Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Amanda J. Casella is active.

Publication


Featured researches published by Amanda J. Casella.


Archive | 2009

Pretreatment Engineering Platform Phase 1 Final Test Report

Dean E. Kurath; Brady D. Hanson; Michael J. Minette; David L. Baldwin; Brian M. Rapko; Lenna A. Mahoney; Philip P. Schonewill; Richard C. Daniel; Paul W. Eslinger; James L. Huckaby; Justin M. Billing; Parameshwaran S. Sundar; Gary B. Josephson; James J. Toth; Satoru T. Yokuda; Ellen Bk Baer; Steven M. Barnes; Elizabeth C. Golovich; Scot D. Rassat; Christopher F. Brown; John Gh Geeting; Gary J. Sevigny; Amanda J. Casella; Jagannadha R. Bontha; Rosanne L. Aaberg; Pamela M. Aker; Consuelo E. Guzman-Leong; Marcia L. Kimura; S. K. Sundaram; Richard P. Pires

Pacific Northwest National Laboratory (PNNL) was tasked by Bechtel National Inc. (BNI) on the River Protection Project, Hanford Tank Waste Treatment and Immobilization Plant (RPP-WTP) project to conduct testing to demonstrate the performance of the WTP Pretreatment Facility (PTF) leaching and ultrafiltration processes at an engineering-scale. In addition to the demonstration, the testing was to address specific technical issues identified in Issue Response Plan for Implementation of External Flowsheet Review Team (EFRT) Recommendations - M12, Undemonstrated Leaching Processes.( ) Testing was conducted in a 1/4.5-scale mock-up of the PTF ultrafiltration system, the Pretreatment Engineering Platform (PEP). Parallel laboratory testing was conducted in various PNNL laboratories to allow direct comparison of process performance at an engineering-scale and a laboratory-scale. This report presents and discusses the results of those tests.


Solvent Extraction and Ion Exchange | 2015

An Advanced TALSPEAK Concept Using 2-Ethylhexylphosphonic Acid Mono-2-Ethylhexyl Ester as the Extractant

Gregg J. Lumetta; Amanda J. Casella; Brian M. Rapko; Tatiana G. Levitskaia; Natasha K. Pence; Jennifer C. Carter; Cynthia M. Niver; Margaret R. Smoot

A method for separating the trivalent actinides and lanthanides is being developed using 2-ethylhexylphosphonic acid mono-2-ethylhexyl ester (HEH[EHP]) as the extractant. The method is based on the preferential binding of the actinides in the aqueous phase by N-(2-hydroxyethyl)ethylenediamine-N,N’,N’-triacetic acid (HEDTA), which serves to keep the actinides in the aqueous phase while the lanthanides are extracted into an organic phase containing HEH[EHP]. The process is very robust, showing little dependence upon the pH or the HEH[EHP], HEDTA, and citrate concentrations over the ranges that might be expected in a nuclear fuel recycling plant. Single-stage runs with a 2-cm centrifugal contactor indicate that modifications to the process chemistry may be needed to increase the extraction rate for Sm, Eu, and Gd. The hydraulic properties of the system are favorable to application in centrifugal contactors.


Analytical Chemistry | 2013

Water O–H Stretching Raman Signature for Strong Acid Monitoring via Multivariate Analysis

Amanda J. Casella; Tatiana G. Levitskaia; James M. Peterson; Samuel A. Bryan

A distinct need exists for real time information on an acid concentration of industrial aqueous streams. Acid strength affects efficiency and selectivity of many separation processes, including nuclear fuel reprocessing. Despite the seeming simplicity of the problem, no practical solution has been offered yet, particularly for the large-scale schemes involving toxic streams such as highly radioactive nuclear wastes. The classic potentiometric technique is not amiable for online measurements due to the requirements of frequent calibration/maintenance and poor long-term stability in aggressive chemical and radiation environments. Therefore, an alternative analytical method is needed. In this work, the potential of using Raman spectroscopic measurements for online monitoring of strong acid concentration in solutions relevant to dissolved used nuclear fuel was investigated. The Raman water signature was monitored for solution systems containing nitric and hydrochloric acids and their sodium salts of systematically varied composition, ionic strength, and temperature. The trivalent neodymium ion simulated the presence of multivalent f metals. The gaussian deconvolution analysis was used to interpret observed effects of the solution nature on the Raman water O-H stretching spectrum. The generated Raman spectroscopic database was used to develop predictive multivariate regression models for the quantification of the acid and other solution components, as well as selected physicochemical properties. This method was validated using independent experiments conducted in a flow solvent extraction system.


Analytical Chemistry | 2015

Development of Online Spectroscopic pH Monitoring for Nuclear Fuel Reprocessing Plants: Weak Acid Schemes.

Amanda J. Casella; Laura R. H. Ahlers; Emily L. Campbell; Tatiana G. Levitskaia; James M. Peterson; Frances N. Smith; Samuel A. Bryan

In nuclear fuel reprocessing, separating trivalent minor actinides and lanthanide fission products is extremely challenging and often necessitates tight pH control in TALSPEAK (Trivalent Actinide-Lanthanide Separation by Phosphorus reagent Extraction from Aqueous Komplexes) separations. In TALSPEAK and similar advanced processes, aqueous pH is one of the most important factors governing the partitioning of lanthanides and actinides between an aqueous phase containing a polyaminopolycarboxylate complexing agent and a weak carboxylic acid buffer and an organic phase containing an acidic organophosphorus extractant. Real-time pH monitoring would significantly increase confidence in the separation performance. Our research is focused on developing a general method for online determination of the pH of aqueous solutions through chemometric analysis of Raman spectra. Spectroscopic process-monitoring capabilities, incorporated in a counter-current centrifugal contactor bank, provide a pathway for online, real-time measurement of solution pH. The spectroscopic techniques are process-friendly and can be easily configured for online applications, whereas classic potentiometric pH measurements require frequent calibration/maintenance and have poor long-term stability in aggressive chemical and radiation environments. Raman spectroscopy discriminates between the protonated and deprotonated forms of the carboxylic acid buffer, and the chemometric processing of the Raman spectral data with PLS (partial least-squares) regression provides a means to quantify their respective abundances and therefore determine the solution pH. Interpretive quantitative models have been developed and validated under a range of chemical composition and pH conditions using a lactic acid/lactate buffer system. The developed model was applied to new spectra obtained from online spectral measurements during a solvent extraction experiment using a counter-current centrifugal contactor bank. The model predicted the pH of this validation data set within 11% for pH > 2, thus demonstrating that this technique could provide the capability of monitoring pH online in applications such as nuclear fuel reprocessing.


Solvent Extraction and Ion Exchange | 2017

An Advanced TALSPEAK Concept for Separating Minor Actinides. Part 1. Process Optimization and Flowsheet Development

Gregg J. Lumetta; Tatiana G. Levitskaia; Andreas Wilden; Amanda J. Casella; Gabriel B. Hall; Leigh Lin; Sergey I. Sinkov; Jack D. Law; Giuseppe Modolo

ABSTRACT A solvent extraction system was developed for separating trivalent actinides from lanthanides. This “Advanced TALSPEAK” system uses 2-ethylhexylphosphonic acid mono-2-ethylhexyl ester (HEH[EHP]) to extract the lanthanides into an n-dodecane-based solvent; the actinides are retained in a citrate-buffered aqueous phase by complexation to a polyaminocarboxylate ligand. Several aqueous-phase ligands were investigated, and N-(2-hydroxyethyl)ethylenediamine-N,N’,N’-triacetic acid (HEDTA) was chosen for further study. Batch distribution measurements indicate that the separation of americium (Am) from the light lanthanides increases as the pH increases. However, previous investigations indicated that the extraction rates for the heavier lanthanides decrease with increasing pH. Therefore, a balance between these competing effects is required. An aqueous phase at pH 2.6 was chosen for further process development, because this offered optimal separation. Centrifugal-contactor single-stage efficiencies were measured to characterize the system’s performance under flow conditions, and an Advanced TALSPEAK flowsheet was designed.


Archive | 2009

Characterization and Leach Testing for PUREX Cladding Waste Sludge (Group 3) and REDOX Cladding Waste Sludge (Group 4) Actual Waste Sample Composites

Lanee A. Snow; Edgar C. Buck; Amanda J. Casella; Jarrod V. Crum; Richard C. Daniel; Kathryn E. Draper; Matthew K. Edwards; Sandra K. Fiskum; Lynette K. Jagoda; Evan D. Jenson; Anne E. Kozelisky; Paul J. MacFarlan; Reid A. Peterson; Robert G. Swoboda

A testing program evaluating actual tank waste was developed in response to Task 4 from the M-12 External Flowsheet Review Team (EFRT) issue response plan.(a) The testing program was subdivided into logical increments. The bulk water-insoluble solid wastes that are anticipated to be delivered to the Waste Treatment and Immobilization Plant (WTP) were identified according to type such that the actual waste testing could be targeted to the relevant categories. Eight broad waste groupings were defined. Samples available from the 222S archive were identified and obtained for testing. The actual wastetesting program included homogenizing the samples by group, characterizing the solids and aqueous phases, and performing parametric leaching tests. Two of the eight defined groups—plutonium-uranium extraction (PUREX) cladding waste sludge (Group 3, or CWP) and reduction-oxidation (REDOX) cladding waste sludge (Group 4, or CWR)—are the subjects of this report. Both the Group 3 and 4 waste composites were anticipated to be high in gibbsite, requiring caustic leaching. Characterization of the composite Group 3 and Group 4 waste samples confirmed them to be high in gibbsite. The focus of the Group 3 and 4 testing was on determining the behavior of gibbsite during caustic leaching. The waste-type definition, archived sample conditions, homogenization activities, characterization (physical, chemical, radioisotope, and crystal habit), and caustic leaching behavior as functions of time, temperature, and hydroxide concentration are discussed in this report. Testing was conducted according to TP-RPP-WTP-467.


Archive | 2009

Filtration and Leach Testing for PUREX Cladding Sludge and REDOX Cladding Sludge Actual Waste Sample Composites

Rick W. Shimskey; Justin M. Billing; Edgar C. Buck; Amanda J. Casella; Jarrod V. Crum; Richard C. Daniel; Kathryn E. Draper; Matthew K. Edwards; Richard T. Hallen; Anne E. Kozelisky; Paul J. MacFarlan; Reid A. Peterson; Robert G. Swoboda

A testing program evaluating actual tank waste was developed in response to Task 4 from the M-12 External Flowsheet Review Team (EFRT) issue response plan (Barnes and Voke 2006). The test program was subdivided into logical increments. The bulk water-insoluble solid wastes that are anticipated to be delivered to the Hanford Waste Treatment and Immobilization Plant (WTP) were identified according to type such that the actual waste testing could be targeted to the relevant categories. Under test plan TP RPP WTP 467 (Fiskum et al. 2007), eight broad waste groupings were defined. Samples available from the 222S archive were identified and obtained for testing. Under this test plan, a waste testing program was implemented that included: • Homogenizing the archive samples by group as defined in the test plan. • Characterizing the homogenized sample groups. • Performing parametric leaching testing on each group for compounds of interest. • Performing bench-top filtration/leaching tests in the hot cell for each group to simulate filtration and leaching activities if they occurred in the UFP2 vessel of the WTP Pretreatment Facility. This report focuses on a filtration/leaching test performed using two of the eight waste composite samples. The sample groups examined in this report were the plutonium-uranium extraction (PUREX) cladding waste sludge (Group 3, or CWP) and reduction-oxidation (REDOX) cladding waste sludge (Group 4, or CWR). Both the Group 3 and 4 waste composites were anticipated to be high in gibbsite, thus requiring caustic leaching. WTP RPT 167 (Snow et al. 2008) describes the homogenization, characterization, and parametric leaching activities before benchtop filtration/leaching testing of these two waste groups. Characterization and initial parametric data in that report were used to plan a single filtration/leaching test using a blend of both wastes. The test focused on filtration testing of the waste and caustic leaching for aluminum, in the form of gibbsite, and its impact on filtration. The initial sample was diluted with a liquid simulant to simulate the receiving concentration of retrieved tank waste into the UFP2 vessel (< 10 wt% undissolved solids). Filtration testing was performed on the dilute waste sample and dewatered to a higher solids concentration. Filtration testing was then performed on the concentrated slurry. Afterwards, the slurry was caustic leached to remove aluminum present in the undissolved solid present in the waste. The leach was planned to simulate leaching conditions in the UFP2 vessel. During the leach, slurry supernate samples were collected to measure the dissolution rate of aluminum in the waste. After the slurry cooled down from the elevated leach temperature, the leach liquor was dewatered from the solids. The remaining slurry was rinsed and dewatered with caustic solutions to remove a majority of the dissolved aluminum from the leached slurry. The concentration of sodium hydroxide in the rinse solutions was high enough to maintain the solubility of the aluminum in the dewatered rinse solutions after dilution of the slurry supernate. Filtration tests were performed on the final slurry to compare to filtration performance before and after caustic leaching.


Inorganic chemistry frontiers | 2017

Mechanisms of neptunium redox reactions in nitric acid solutions

Sayandev Chatterjee; Samuel A. Bryan; Amanda J. Casella; James M. Peterson; Tatiana G. Levitskaia

The first transuranium element neptunium (Np) exhibits complicated behavior in acidic solutions as it adopts a wide range of oxidation states typically from +3 to +6 and coordinates with a large variety of ligands. In particular, the accurate determination of Np redox potentials in nitric acid solutions is challenging due to overlapping chemical and electrochemical reactions leading to significant experimental uncertainties. Over the past several decades, spectrophotometry has been extensively applied to identify and characterize Np solution species in different oxidation states. However, relevant spectral databases of Np in nitric acid solutions that can serve for reference purposes are yet to be established due to the experimental difficulty in isolating and stabilizing Np species in pure oxidation states without compromising their solution optical properties. This work demonstrates that a combination of voltammetry and controlled-potential in situ thin-layer spectropotentiometry overcomes these challenges, and vis–NIR spectra of electrochemically generated Np species in pure +3, +4, +5, or +6 oxidation states in the systematically varied 0.5–4 M nitric acid solutions were obtained. In situ optical monitoring of the interconversion between adjacent Np oxidation states resulted in elucidation of the mechanisms of the involved redox reactions and an in-depth understanding of the relative stability of the Np oxidation states, and allowed benchmarking of the redox potentials of the NpO22+/NpO2+, NpO2+/Np4+ and Np4+/Np3+ couples. Notably, the NpO2+/Np4+ couple was distinguished from the proximal Np4+/Np3+ process overcoming previous concerns and challenges encountered in the accurate determination of the respective potentials.


Archive | 2015

Fuel Thermo-physical Characterization Project: Evaluation of Models to Calculate Thermal Diffusivity of Layered Composites

Douglas E. Burkes; Amanda J. Casella; Levi D. Gardner; Andrew M. Casella; Tanja K. Huber; Harald Breitkreutz

The Office of Material Management and Minimization Fuel Thermo-physical Characterization Project at Pacific Northwest National Laboratory (PNNL) is tasked with using PNNL facilities and processes to receive irradiated low enriched uranium-molybdenum fuel plate samples and perform analyses in support of the Office of Material Management and Minimization Reactor Conversion Program. This work is in support of the Fuel Development Pillar that is managed by Idaho National Laboratory. A key portion of the scope associated with this project was to measure the thermal properties of fuel segments harvested from plates that were irradiated in the Advanced Test Reactor. Thermal diffusivity of samples prepared from the fuel segments was measured using laser flash analysis. Two models, one developed by PNNL and the other developed by the Technische Universitat Munchen (TUM), were evaluated to extract the thermal diffusivity of the uranium-molybdenum alloy from measurements made on the irradiated, layered composites. The experimental data of the “TC” irradiated fuel segment was evaluated using both models considering a three-layer and five-layer system. Both models are in acceptable agreement with one another and indicate that the zirconium diffusion barrier has a minimal impact on the overall thermal diffusivity of the monolithic U-Mo fuel.


Archive | 2011

FY-2010 Process Monitoring Technology Final Report

Christopher R. Orton; Samuel A. Bryan; Amanda J. Casella; Wes Hines; Tatiana G. Levitskaia; J. henkell; Jon M. Schwantes; Elizabeth A. Jordan; Amanda M. Lines; Carlos G. Fraga; James M. Peterson; Dawn E. Verdugo; Ronald N. Christensen; Shane M. Peper

During FY 2010, work under the Spectroscopy-Based Process Monitoring task included ordering and receiving four fluid flow meters and four flow visible-near infrared spectrometer cells to be instrumented within the centrifugal contactor system at Pacific Northwest National Laboratory (PNNL). Initial demonstrations of real-time spectroscopic measurements on cold-stream simulants were conducted using plutonium (Pu)/uranium (U) (PUREX) solvent extraction process conditions. The specific test case examined the extraction of neodymium nitrate (Nd(NO3)3) from an aqueous nitric acid (HNO3) feed into a tri-n-butyl phosphate (TBP)/ n-dodecane solvent. Demonstration testing of this system included diverting a sample from the aqueous feed meanwhile monitoring the process in every phase using the on-line spectroscopic process monitoring system. The purpose of this demonstration was to test whether spectroscopic monitoring is capable of determining the mass balance of metal nitrate species involved in a cross-current solvent extraction scheme while also diverting a sample from the system. The diversion scenario involved diverting a portion of the feed from a counter-current extraction system while a continuous extraction experiment was underway. A successful test would demonstrate the ability of the process monitoring system to detect and quantify the diversion of material from the system during a real-time continuous solvent extraction experiment. The system was designed to mimic a PUREX-type extraction process with a bank of four centrifugal contactors. The aqueous feed contained Nd(NO3)3 in HNO3, and the organic phase was composed of TBP/n-dodecane. The amount of sample observed to be diverted by on-line spectroscopic process monitoring was measured to be 3 mmol (3 x 10-3 mol) Nd3+. This value was in excellent agreement with the 2.9 mmol Nd3+ value based on the known mass of sample taken (i.e., diverted) directly from the system feed solution.

Collaboration


Dive into the Amanda J. Casella's collaboration.

Top Co-Authors

Avatar

Samuel A. Bryan

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Tatiana G. Levitskaia

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Amanda M. Lines

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew M. Casella

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Gregg J. Lumetta

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Matthew K. Edwards

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Douglas E. Burkes

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Edgar C. Buck

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Paul J. MacFarlan

Pacific Northwest National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge