Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paul Kempen is active.

Publication


Featured researches published by Paul Kempen.


ACS Nano | 2012

Photoacoustic Imaging of Mesenchymal Stem Cells in Living Mice via Silica-Coated Gold Nanorods

Jesse V. Jokerst; Mridhula Thangaraj; Paul Kempen; Robert Sinclair; Sanjiv S. Gambhir

Improved imaging modalities are critically needed for optimizing stem cell therapy. Techniques with real-time content to guide and quantitate cell implantation are especially important in applications such as musculoskeletal regenerative medicine. Here, we report the use of silica-coated gold nanorods as a contrast agent for photoacoustic imaging and quantitation of mesenchymal stem cells in rodent muscle tissue. The silica coating increased the uptake of gold into the cell more than 5-fold, yet no toxicity or proliferation changes were observed in cells loaded with this contrast agent. Pluripotency of the cells was retained, and secretome analysis indicated that only IL-6 was disregulated more than 2-fold from a pool of 26 cytokines. The low background of the technique allowed imaging of down to 100,000 cells in vivo. The spatial resolution is 340 μm, and the temporal resolution is 0.2 s, which is at least an order of magnitude below existing cell imaging approaches. This approach has significant advantages over traditional cell imaging techniques like positron emission tomography and magnetic resonance imaging including real time monitoring of stem cell therapy.


Nano Letters | 2012

Shape Matters: Intravital Microscopy Reveals Surprising Geometrical Dependence for Nanoparticles in Tumor Models of Extravasation

Bryan Smith; Paul Kempen; Donna M. Bouley; Alexander M. Xu; Zhuang Liu; Nicholas A. Melosh; Hongjie Dai; Robert Sinclair; Sanjiv S. Gambhir

Delivery is one of the most critical obstacles confronting nanoparticle use in cancer diagnosis and therapy. For most oncological applications, nanoparticles must extravasate in order to reach tumor cells and perform their designated task. However, little understanding exists regarding the effect of nanoparticle shape on extravasation. Herein we use real-time intravital microscopic imaging to meticulously examine how two different nanoparticles behave across three different murine tumor models. The study quantitatively demonstrates that high-aspect ratio single-walled carbon nanotubes (SWNTs) display extravasational behavior surprisingly different from, and counterintuitive to, spherical nanoparticles although the nanoparticles have similar surface coatings, area, and charge. This work quantitatively indicates that nanoscale extravasational competence is highly dependent on nanoparticle geometry and is heterogeneous.


Science Translational Medicine | 2011

The Fate and Toxicity of Raman-Active Silica-Gold Nanoparticles in Mice

Avnesh S. Thakor; Richard Luong; Ramasamy Paulmurugan; Frank I. Lin; Paul Kempen; Cristina Zavaleta; Pauline Chu; Tarik F. Massoud; Robert Sinclair; Sanjiv S. Gambhir

Gold-core nanoparticles designed for imaging by Raman spectroscopy in patients are generally nontoxic in mice, causing only temporary liver inflammation when given intravenously. Minimal Toxicity of Nanoparticles for Raman Imaging Nanoparticles are just the right size to interact with molecules and cells. But how best to harness them as tools in the service of medicine? The authors of this paper have pursued one application: nanoparticles created to image specific cells and molecules from inside living animals—and eventually patients—via Raman spectroscopy, a method based on inelastic light scattering. Although the Raman effect is weak, a gold core inside the nanoparticles boosts the Raman signal enough so that it can be detected inside living tissue. To prepare the ground for use of these nanoparticles in imaging colorectal cancer in patients, Thakor et al. thoroughly tested their toxicity in mice. When introduced through the colon, these gold-core nanoparticles did not cross the gut lining into the body of the mice, a result that bodes well for their future as diagnostic and treatment vehicles for gut diseases. The authors first followed the fate of the silica-gold nanoparticles after the intravenous injection of a high dose into mice. Although their intravenous injection did cause temporary inflammation and some apoptosis in the liver 24 hours later, the nanoparticles were taken up by macrophages in the liver and spleen and eventually cleared from the body through the reticulo-endothelial system. A comprehensive survey of the mice revealed no ill effects of the nanoparticles on their general health or behavior. Their ECGs, blood pressure and heart rate were normal, and a panel of measurements of blood cells and chemistry revealed no effect of the particles. When the authors administered the nanoparticles into the colon, through the rectum, there was minimal evidence that the particles even passed into the animals’ circulation. Even the limited reaction in the liver seen after intravenous administration was absent and the particles were cleared within 5 minutes. The silica-gold nanoparticle tested in this paper can be coated with specific targeting molecules; the addition of one of these—a heptapeptide—did not increase the toxicity after treatment via the colon. These results set the stage for Raman spectroscopic imaging of these targeted, gold-core nanoparticles in diagnosis of colorectal cancer or other disease of hollow viscera. Attachment of premalignant cancer specific targeting groups to the particle would allow detection of early lesions with a endoscopic Raman probe, an approach that could be extended to other clinical situations. Raman spectroscopy is an optical imaging method that is based on the Raman effect, the inelastic scattering of a photon when energy is absorbed from light by a surface. Although Raman spectroscopy is widely used for chemical and molecular analysis, its clinical application has been hindered by the inherently weak nature of the Raman effect. Raman-silica-gold-nanoparticles (R-Si-Au-NPs) overcome this limitation by producing larger Raman signals through surface-enhanced Raman scattering. Because we are developing these particles for use as targeted molecular imaging agents, we examined the acute toxicity and biodistribution of core polyethylene glycol (PEG)–ylated R-Si-Au-NPs after different routes of administration in mice. After intravenous administration, PEG-R-Si-Au-NPs were removed from the circulation by macrophages in the liver and spleen (that is, the reticuloendothelial system). At 24 hours, PEG-R-Si-Au-NPs elicited a mild inflammatory response and an increase in oxidative stress in the liver, which subsided by 2 weeks after administration. No evidence of significant toxicity was observed by measuring clinical, histological, biochemical, or cardiovascular parameters for 2 weeks. Because we are designing targeted PEG-R-Si-Au-NPs (for example, PEG-R-Si-Au-NPs labeled with an affibody that binds specifically to the epidermal growth factor receptor) to detect colorectal cancer after administration into the bowel lumen, we tested the toxicity of the core nanoparticle after administration per rectum. We observed no significant bowel or systemic toxicity, and no PEG-R-Si-Au-NPs were detected systemically. Although additional studies are required to investigate the long-term effects of PEG-R-Si-Au-NPs and their toxicity when carrying the targeting moiety, the results presented here support the idea that PEG-R-Si-Au-NPs can be safely used in living subjects, especially when administered rectally.


Theranostics | 2015

Theranostic Mesoporous Silica Nanoparticles Biodegrade after Pro-Survival Drug Delivery and Ultrasound/Magnetic Resonance Imaging of Stem Cells

Paul Kempen; Sarah L. Greasley; Kelly A. Parker; Jos L. Campbell; Huan-Yu Chang; Julian R. Jones; Robert Sinclair; Sanjiv S. Gambhir; Jesse V. Jokerst

Increasing cell survival in stem cell therapy is an important challenge for the field of regenerative medicine. Here, we report theranostic mesoporous silica nanoparticles that can increase cell survival through both diagnostic and therapeutic approaches. First, the nanoparticle offers ultrasound and MRI signal to guide implantation into the peri-infarct zone and away from the most necrotic tissue. Second, the nanoparticle serves as a slow release reservoir of insulin-like growth factor (IGF)—a protein shown to increase cell survival. Mesenchymal stem cells labeled with these nanoparticles had detection limits near 9000 cells with no cytotoxicity at the 250 µg/mL concentration required for labeling. We also studied the degradation of the nanoparticles and showed that they clear from cells in approximately 3 weeks. The presence of IGF increased cell survival up to 40% (p<0.05) versus unlabeled cells under in vitro serum-free culture conditions.


Small | 2011

Oxidative Stress Mediates the Effects of Raman-Active Gold Nanoparticles in Human Cells

Avnesh S. Thakor; Ramasamy Paulmurugan; Paul Kempen; Cristina Zavaleta; Robert Sinclair; Tarik F. Massoud; Sanjiv S. Gambhir

Polyethylene glycol (PEG)ylated Raman-active gold nanoparticles (PEG-R-AuNPs) consist of an interchangeable Raman organic molecule layer held onto a gold nanocore by a silica shell. PEG-R-AuNPs have been shown preclinically to increase the sensitivity and specificity of Raman spectroscopy, with picomolar sensitivity and multiplexing capabilities. Although clinical trials are being designed to use functionalized PEG-R-AuNPs in various applications (e.g., to target dysplastic bowel lesions during colonoscopy), the effects of these nanoparticles on human cells remain unknown. The occurrence and mechanisms underlying any potential cytotoxicity induced by these nanoparticles (0-1000 PEG-R-AuNPs/cell) are investigated in immortalized human HeLa and HepG2 cell lines at several time points (0-48 h) after exposure. Using fluorometric assays, cell viability (MTT), reactive oxygen species (ROS) generation (dichlorofluorescein diacetate), protein oxidation (protein carbonyl content), and total cellular antioxidant concentrations the concentrations (metmyoblobin-induced oxidation of ABTS) are assessed. Analysis of lipid oxidation using an enzyme immunoassay (8-isoprostane concentrations), gene expression of antioxidant enzymes using quantitative reverse transcription polymerase chain reactions, and the intracellular location of PEG-R-AuNPs using transmission electron microscopy is also undertaken. PEG-R-AuNPs cause no cytotoxicity in either HeLa or HepG2 cells in the acute setting as ROS generation is balanced by antioxidant enzyme upregulation. Following prolonged exposures (48 h) at relatively high concentrations (1000 PEG-R-AuNPs/cell), nanoparticles are found within vesicles inside cells. Under these conditions, a minimal amount of cytotoxicity is seen in both cell lines owing to increases in cellular oxidative stress, most likely due to ROS overwhelming the antioxidant defenses. Evidence of oxidative stress-induced damage includes increased lipid and protein oxidation. Although further in vivo toxicity studies are necessary, these initial encouraging results show that PEG-R-AuNPs cause minimal toxicity in human cells in the acute setting, which bodes well for potential future applications of these nanoparticles in living subjects.


Small | 2011

Preclinical Evaluation of Raman Nanoparticle Biodistribution for their Potential Use in Clinical Endoscopy Imaging

Cristina Zavaleta; Keith B. Hartman; Zheng Miao; Michelle L. James; Paul Kempen; Avnesh S. Thakor; Carsten H. Nielsen; Robert Sinclair; Zhen Cheng; Sanjiv S. Gambhir

Raman imaging offers unsurpassed sensitivity and multiplexing capabilities. However, its limited depth of light penetration makes direct clinical translation challenging. Therefore, a more suitable way to harness its attributes in a clinical setting would be to couple Raman spectroscopy with endoscopy. The use of an accessory Raman endoscope in conjunction with topically administered tumor-targeting Raman nanoparticles during a routine colonoscopy could offer a new way to sensitively detect dysplastic lesions while circumventing Ramans limited depth of penetration and avoiding systemic toxicity. In this study, the natural biodistribution of gold surface-enhanced Raman scattering (SERS) nanoparticles is evaluated by radiolabeling them with (64) Cu and imaging their localization over time using micropositron emission tomography (PET). Mice are injected either intravenously (IV) or intrarectally (IR) with approximately 100 microcuries (μCi) (3.7 megabecquerel (MBq)) of (64) Cu-SERS nanoparticles and imaged with microPET at various time points post injection. Quantitative biodistribution data are obtained as % injected dose per gram (%ID g(-1)) from each organ, and the results correlate well with the corresponding microPET images, revealing that IV-injected mice have significantly higher uptake (p < 0.05) in the liver (5 h = 8.96% ID g(-1); 24 h = 8.27% ID g(-1)) than IR-injected mice (5 h = 0.09% ID g(-1); 24 h = 0.08% ID g(-1)). IR-injected mice show localized uptake in the large intestine (5 h = 10.37% ID g(-1); 24 h = 0.42% ID g(-1)) with minimal uptake in other organs. Raman imaging of excised tissues correlate well with biodistribution data. These results suggest that the topical application of SERS nanoparticles in the mouse colon appears to minimize their systemic distribution, thus avoiding potential toxicity and supporting the clinical translation of Raman spectroscopy as an endoscopic imaging tool.


Biomaterials | 2014

A tunable silk-alginate hydrogel scaffold for stem cell culture and transplantation.

Keren Ziv; Harald Nuhn; Yael Ben-Haim; Laura Sarah Sasportas; Paul Kempen; Thomas P. Niedringhaus; Michael Hrynyk; Robert Sinclair; Annelise E. Barron; Sanjiv S. Gambhir

One of the major challenges in regenerative medicine is the ability to recreate the stem cell niche, which is defined by its signaling molecules, the creation of cytokine gradients, and the modulation of matrix stiffness. A wide range of scaffolds has been developed in order to recapitulate the stem cell niche, among them hydrogels. This paper reports the development of a new silk-alginate based hydrogel with a focus on stem cell culture. This biocomposite allows to fine tune its elasticity during cell culture, addressing the importance of mechanotransduction during stem cell differentiation. The silk-alginate scaffold promotes adherence of mouse embryonic stem cells and cell survival upon transplantation. In addition, it has tunable stiffness as function of the silk-alginate ratio and the concentration of crosslinker--a characteristic that is very hard to accomplish in current hydrogels. The hydrogel and the presented results represents key steps on the way of creating artificial stem cell niche, opening up new paths in regenerative medicine.


Radiology | 2013

Iron Administration before Stem Cell Harvest Enables MR Imaging Tracking after Transplantation

Aman Khurana; Fanny Chapelin; Graham Beck; Olga D. Lenkov; Jessica Donig; Hossein Nejadnik; Solomon Messing; Nikita Derugin; Ray Chun-Fai Chan; Amitabh Gaur; Barbara Sennino; Donald M. McDonald; Paul Kempen; Grigory A. Tikhomirov; Jianghong Rao; Heike E. Daldrup-Link

PURPOSE To determine whether intravenous ferumoxytol can be used to effectively label mesenchymal stem cells (MSCs) in vivo and can be used for tracking of stem cell transplants. MATERIALS AND METHODS This study was approved by the institutional animal care and use committee. Sprague-Dawley rats (6-8 weeks old) were injected with ferumoxytol 48 hours prior to extraction of MSCs from bone marrow. Ferumoxytol uptake by these MSCs was evaluated with fluorescence, confocal, and electron microscopy and compared with results of traditional ex vivo-labeling procedures. The in vivo-labeled cells were subsequently transplanted in osteochondral defects of 14 knees of seven athymic rats and were evaluated with magnetic resonance (MR) imaging up to 4 weeks after transplantation. T2 relaxation times of in vivo-labeled MSC transplants and unlabeled control transplants were compared by using t tests. MR data were correlated with histopathologic results. RESULTS In vivo-labeled MSCs demonstrated significantly higher ferumoxytol uptake compared with ex vivo-labeled cells. With electron microscopy, iron oxide nanoparticles were localized in secondary lysosomes. In vivo-labeled cells demonstrated significant T2 shortening effects in vitro and in vivo when they were compared with unlabeled control cells (T2 in vivo, 15.4 vs 24.4 msec; P < .05) and could be tracked in osteochondral defects for 4 weeks. Histologic examination confirmed the presence of iron in labeled transplants and defect remodeling. CONCLUSION Intravenous ferumoxytol can be used to effectively label MSCs in vivo and can be used for tracking of stem cell transplants with MR imaging. This method eliminates risks of contamination and biologic alteration of MSCs associated with ex vivo-labeling procedures.


Bioconjugate Chemistry | 2014

Redox-Triggered Self-Assembly of Gadolinium-Based MRI Probes for Sensing Reducing Environment

Deju Ye; Prachi Pandit; Paul Kempen; Jianguo Lin; Liqin Xiong; Robert Sinclair; Brian K. Rutt; Jianghong Rao

Controlled self-assembly of small molecule gadolinium (Gd) complexes into nanoparticles (GdNPs) is emerging as an effective approach to design activatable magnetic resonance imaging (MRI) probes and amplify the r1 relaxivity. Herein, we employ a reduction-controlled macrocyclization reaction and self-assembly to develop a redox activated Gd-based MRI probe for sensing a reducing environment. Upon disulfide reduction at physiological conditions, an acyclic contrast agent 1 containing dual Gd-chelates undergoes intramolecular macrocyclization to form rigid and hydrophobic macrocycles, which subsequently self-assemble into GdNPs, resulting in a ∼60% increase in r1 relaxivity at 0.5 T. Probe 1 has high r1 relaxivity (up to 34.2 mM–1 s–1 per molecule at 0.5 T) upon activation, and also shows a high sensitivity and specificity for MR detection of thiol-containing biomolecules.


ACS Applied Materials & Interfaces | 2017

Multicompartment Artificial Organelles Conducting Enzymatic Cascade Reactions inside Cells

Maria Godoy-Gallardo; Cédric Pierre Labay; Vasileios D. Trikalitis; Paul Kempen; Jannik Larsen; Thomas Lars Andresen; Leticia Hosta-Rigau

Cell organelles are subcellular structures entrapping a set of enzymes to achieve a specific functionality. The incorporation of artificial organelles into cells is a novel medical paradigm which might contribute to the treatment of various cell disorders by replacing malfunctioning organelles. In particular, artificial organelles are expected to be a powerful solution in the context of enzyme replacement therapy since enzymatic malfunction is the primary cause of organelle dysfunction. Although several attempts have been made to encapsulate enzymes within a carrier vehicle, only few intracellularly active artificial organelles have been reported to date and they all consist of single-compartment carriers. However, it is noted that biological organelles consist of multicompartment architectures where enzymatic reactions are executed within distinct subcompartments. Compartmentalization allows for multiple processes to take place in close vicinity and in a parallel manner without the risk of interference or degradation. Here, we report on a subcompartmentalized and intracellularly active carrier, a crucial step for advancing artificial organelles. In particular, we develop and characterize a novel capsosome system, which consists of multiple liposomes and fluorescent gold nanoclusters embedded within a polymer carrier capsule. We subsequently demonstrate that encapsulated enzymes preserve their activity intracellularly, allowing for controlled enzymatic cascade reaction within a host cell.

Collaboration


Dive into the Paul Kempen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thomas Lars Andresen

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fredrik Melander

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge