Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paul M. Hasegawa is active.

Publication


Featured researches published by Paul M. Hasegawa.


Plant Physiology | 1995

Ion Homeostasis in NaCl Stress Environments

Xiaomu Niu; Ray A. Bressan; Paul M. Hasegawa; José M. Pardo

Homeostasis can be defined as the tendency of a cell or an organism to maintain internal steady state, even in response to any environmental perturbation or stimulus tending to disturb normality, because of the coordinate responses of its constituent components. Typically, ions constantly flux in and out of cells in a controlled fashion with net flux adjusted to accommodate cellular requirements, thus creating an ionic homeostasis. When plant cells are exposed to salinity, mediated by high NaCl concentrations, kinetic steady states of ion transport for Na+ and Cland other ions, such as K+ and Ca2+, are disturbed (Binzel et al., 1988). High apoplastic levels of Na+ and Clalter aqueous and ionic thermodynamic equilibria, resulting in hyperosmotic stress, ionic imbalance, and toxicity. Thus, it is vital for the plant to re-establish cellular ion homeostasis for metabolic functioning and growth, that is, to adapt to the saline environment. Comparisons of what have been interpreted to be adaptive responses among various species lead to the conclusion that some salt-tolerant plants have evolved specialized complex mechanisms that allow adaptation to saline stress conditions. In fact, these unique mechanisms, such as salt glands, exist in few plant species and cannot be presumed to be ubiquitously functional for salt adaptation of all plants. However, intrinsically cellular-based mechanisms appear to be common to all genotypes and are a requisite for salt tolerance. Of paramount importance are those mechanisms that function to regulate ion homeostasis while mediating osmotic adjustment through the accumulation and intracellular compartmentation of ions that are predominant in the external environment. In this update we will focus principally on Na+ homeostasis in sodic environments; however, we also include discussions of H+, K+, Ca2+, and Clbecause of the interrelationship of these ions with Na+ homeostasis. Ion transport processes across the plasma membrane and the tonoplast will be emphasized because these are presumed to be most essential for the control of intracellular Na+ uptake and vacuolar compartmentation.


The Plant Cell | 1994

Plant Defense Genes Are Synergistically Induced by Ethylene and Methyl Jasmonate.

Yi Xu; Pi-Fang Linda Chang; Dong Liu; Meena L. Narasimhan; Kashchandra G. Raghothama; Paul M. Hasegawa; Ray A. Bressan

Combinations of ethylene and methyl jasmonate (E/MeJA) synergistically induced members of both groups 1 and 5 of the pathogenesis-related (PR) superfamily of defense genes. E/MeJA caused a synergistic induction of PR-1b and osmotin (PR-5) mRNA accumulation in tobacco seedlings. E/MeJA also synergistically activated the osmotin promoter fused to a [beta]-glucuronidase marker gene in a tissue-specific manner. The E/MeJA responsiveness of the osmotin promoter was localized on a -248 to +45 fragment that exhibited responsiveness to several other inducers. E/MeJA induction also resulted in osmotin protein accumulation to levels similar to those induced by osmotic stress. Of the several known inducers of the osmotin gene, including salicylic acid (SA), fungal infection is the only other condition known to cause substantial osmotin protein accumulation in Wisconsin 38, a tobacco cultivar that does not respond hypersensitively to tobacco mosaic virus. Based on the ability of the protein kinase C inhibitor 1-(5-isoquinolinylsulfonyl)-2-methylpiperazine to block ethylene induction of PR-1b mRNA accumulation and its inability to block osmotin mRNA induction by ethylene, these two PR gene groups appeared to have at least partially separate signal transduction pathways. Stimulation of osmotin mRNA accumulation by okadaic acid indicated that another protein kinase system is involved in regulation of the osmotin gene. SA, which is known to induce pathogen resistance in tobacco, could not induce the osmotin gene as much as E/MeJA and neither could it induce PR-1b as much as SA and MeJA combined.


Trends in Plant Science | 1997

Regulation of protease inhibitors and plant defense

Hisashi Koiwa; Ray A. Bressan; Paul M. Hasegawa

Protease inhibitors are an important element of the plant defense response to insect predation, and may also act to restrict infection by some nematodes. Production of these inhibitors is highly regulated by a signal transduction pathway that is initiated by predation and transduced as a wound response. Local and systemic extracellular inducers of the signal pathway are released by injury. Current evidence suggests that the production of the inhibitors occurs via the octadecanoid pathway, which catalyzes the breakdown of linolenic acid and the formation of jasmonic acid to induce protease inhibitor gene expression.


Proceedings of the National Academy of Sciences of the United States of America | 2001

AtHKT1 is a salt tolerance determinant that controls Na^+ entry into plant roots

Ana Rus; Shuji Yokoi; Altanbadralt Sharkhuu; Muppala Reddy; Byeong-ha Lee; Tracie K. Matsumoto; Hisashi Koiwa; Jian-Kang Zhu; Ray A. Bressan; Paul M. Hasegawa

Two Arabidopsis thaliana extragenic mutations that suppress NaCl hypersensitivity of the sos3–1 mutant were identified in a screen of a T-DNA insertion population in the genetic background of Col-0 gl1 sos3–1. Analysis of the genome sequence in the region flanking the T-DNA left border indicated that sos3–1 hkt1–1 and sos3–1 hkt1–2 plants have allelic mutations in AtHKT1. AtHKT1 mRNA is more abundant in roots than shoots of wild-type plants but is not detected in plants of either mutant, indicating that this gene is inactivated by the mutations. hkt1–1 and hkt1–2 mutations can suppress to an equivalent extent the Na+ sensitivity of sos3–1 seedlings and reduce the intracellular accumulation of this cytotoxic ion. Moreover, sos3–1 hkt1–1 and sos3–1 hkt1–2 seedlings are able to maintain [K+]int in medium supplemented with NaCl and exhibit a substantially higher intracellular ratio of K+/Na+ than the sos3–1 mutant. Furthermore, the hkt1 mutations abrogate the growth inhibition of the sos3–1 mutant that is caused by K+ deficiency on culture medium with low Ca2+ (0.15 mM) and <200 μM K+. Interestingly, the capacity of hkt1 mutations to suppress the Na+ hypersensitivity of the sos3–1 mutant is reduced substantially when seedlings are grown in medium with low Ca2+ (0.15 mM). These results indicate that AtHKT1 is a salt tolerance determinant that controls Na+ entry and high affinity K+ uptake. The hkt1 mutations have revealed the existence of another Na+ influx system(s) whose activity is reduced by high [Ca2+]ext.


Plant Physiology | 2004

Salt Cress. A Halophyte and Cryophyte Arabidopsis Relative Model System and Its Applicability to Molecular Genetic Analyses of Growth and Development of Extremophiles

Gunsu Inan; Quan Zhang; Pinghua Li; Zenglan Wang; Ziyi Cao; Hui Zhang; Changqing Zhang; Tanya M. Quist; S. Mark Goodwin; Jianhua Zhu; Huazhong Shi; Barbara Damsz; Tarif Charbaji; Qingqiu Gong; Shisong Ma; Mark Fredricksen; David W. Galbraith; Matthew A. Jenks; David Rhodes; Paul M. Hasegawa; Hans J. Bohnert; Robert J. Joly; Ray A. Bressan; Jian-Kang Zhu

Salt cress (Thellungiella halophila) is a small winter annual crucifer with a short life cycle. It has a small genome (about 2 × Arabidopsis) with high sequence identity (average 92%) with Arabidopsis, and can be genetically transformed by the simple floral dip procedure. It is capable of copious seed production. Salt cress is an extremophile native to harsh environments and can reproduce after exposure to extreme salinity (500 mm NaCl) or cold to −15°C. It is a typical halophyte that accumulates NaCl at controlled rates and also dramatic levels of Pro (>150 mm) during exposure to high salinity. Stomata of salt cress are distributed on the leaf surface at higher density, but are less open than the stomata of Arabidopsis and respond to salt stress by closing more tightly. Leaves of salt cress are more succulent-like, have a second layer of palisade mesophyll cells, and are frequently shed during extreme salt stress. Roots of salt cress develop both an extra endodermis and cortex cell layer compared to Arabidopsis. Salt cress, although salt and cold tolerant, is not exceptionally tolerant of soil desiccation. We have isolated several ethyl methanesulfonate mutants of salt cress that have reduced salinity tolerance, which provide evidence that salt tolerance in this halophyte can be significantly affected by individual genetic loci. Analysis of salt cress expressed sequence tags provides evidence for the presence of paralogs, missing in the Arabidopsis genome, and for genes with abiotic stress-relevant functions. Hybridizations of salt cress RNA targets to an Arabidopsis whole-genome oligonucleotide array indicate that commonly stress-associated transcripts are expressed at a noticeably higher level in unstressed salt cress plants and are induced rapidly under stress. Efficient transformation of salt cress allows for simple gene exchange between Arabidopsis and salt cress. In addition, the generation of T-DNA-tagged mutant collections of salt cress, already in progress, will open the door to a new era of forward and reverse genetic studies of extremophile plant biology.


Plant Physiology | 2004

AtHKT1 Facilitates Na+ Homeostasis and K+ Nutrition in Planta

Ana Rus; Byeong-ha Lee; Alicia Muñoz-Mayor; Altanbadralt Sharkhuu; Kenji Miura; Jian-Kang Zhu; Ray A. Bressan; Paul M. Hasegawa

Genetic and physiological data establish that Arabidopsis AtHKT1 facilitates Na+ homeostasis in planta and by this function modulates K+ nutrient status. Mutations that disrupt AtHKT1 function suppress NaCl sensitivity of sos1-1 and sos2-2, as well as of sos3-1 seedlings grown in vitro and plants grown in controlled environmental conditions. hkt1 suppression of sos3-1 NaCl sensitivity is linked to higher Na+ content in the shoot and lower content of the ion in the root, reducing the Na+ imbalance between these organs that is caused by sos3-1. AtHKT1 transgene expression, driven by its innate promoter, increases NaCl but not LiCl or KCl sensitivity of wild-type (Col-0 gl1) or of sos3-1 seedlings. NaCl sensitivity induced by AtHKT1 transgene expression is linked to a lower K+ to Na+ ratio in the root. However, hkt1 mutations increase NaCl sensitivity of both seedlings in vitro and plants grown in controlled environmental conditions, which is correlated with a lower K+ to Na+ ratio in the shoot. These results establish that AtHKT1 is a focal determinant of Na+ homeostasis in planta, as either positive or negative modulation of its function disturbs ion status that is manifested as salt sensitivity. K+-deficient growth of sos1-1, sos2-2, and sos3-1 seedlings is suppressed completely by hkt1-1. AtHKT1 transgene expression exacerbates K+ deficiency of sos3-1 or wild-type seedlings. Together, these results indicate that AtHKT1 controls Na+ homeostasis in planta and through this function regulates K+ nutrient status.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Sumoylation of ABI5 by the Arabidopsis SUMO E3 ligase SIZ1 negatively regulates abscisic acid signaling

Kenji Miura; Ji-Young Lee; Jing Bo Jin; Chan Yul Yoo; Tomoko Miura; Paul M. Hasegawa

SUMO (small ubiquitin-related modifier) conjugation (i.e., sumoylation) to protein substrates is a reversible posttranslational modification that regulates signaling by modulating transcription factor activity. This paper presents evidence that the SUMO E3 ligase SIZ1 negatively regulates abscisic acid (ABA) signaling, which is dependent on the bZIP transcripton factor ABI5. Loss-of-function T-DNA insertion siz1–2 and siz1–3 mutations caused ABA hypersensitivity for seed germination arrest and seedling primary root growth inhibition. Furthermore, expression of genes that are ABA-responsive through ABI5-dependent signaling (e.g., RD29A, Rd29B, AtEm6, RAB18, ADH1) was hyperinduced by the hormone in siz1 seedlings. abi5–4 suppressed ABA hypersensitivity caused by siz1 (siz1–2 abi5–4), demonstrating an epistatic genetic interaction between SIZ1 and ABI5. A K391R substitution in ABI5 [ABI5(K391R)] blocked SIZ1-mediated sumoylation of the transcription factor in vitro and in Arabidopsis protoplasts, indicating that ABI5 is sumoylated through SIZ1 and that K391 is the principal site for SUMO conjugation. In abi5–4 plants, ABI5(K391R) expression caused greater ABA hypersensitivity (gene expression, seed germination arrest and primary root growth inhibition) compared with ABI5 expression. Together, these results establish that SIZ1-dependent sumoylation of ABI5 attenuates ABA signaling. The double mutant siz1–2 afp-1 exhibited even greater ABA sensitivity than the single mutant siz1, suggesting that SIZ1 represses ABI5 signaling function independent of AFP1.


Plant Science | 1996

Antifungal activity of tobacco osmotin has specificity and involves plasma membrane permeabilization

Laura Abad; Matilde Paino D'Urzo; Dong Liu; Meena L. Narasimhan; Moshe Reuveni; Jian-Kang Zhu; Xiaomu Niu; Narendra K. Singh; Paul M. Hasegawa; Ray A. Bressan

Osmotin protein is able to inhibit in vitro the growth of a number of unrelated pathogens. A survey of 31 isolates representing 18 fungal genera indicated that sensitivity may be determined at the genus level. Hyphal growth of Aspergillus flavus, Aspergillus parasitica, Rhizoctonia solani and Macrophomina phaseolina was highly resistant to osmotin whereas the growth of Bipolaris, Fusarium and Phytophthora species was very sensitive. Of all fungi tested Trichoderma longibrachiatum hyphal growth was most inhibited by osmotin treatment. Osmotin either induced spore lysis, inhibited spore germination or reduced germling viability in seven fungal species that exhibited some degree of sensitivity in hyphal growth inhibition tests. The species-specific growth inhibition was correlated with the ability of osmotin to dissipate the fungal membrane pH gradient. Both growth inhibition and pH gradient dissipation by osmotin were sensitive to NaCl and other inorganic cations. Cells of T. longibrachiatum were insensitive to osmotin after plasmolysis, suggesting that the cell wall may be a component of the mechanism by which osmotin permeabilizes the plasma membrane and kills fungal cells.


Nature Reviews Genetics | 2015

Genetic mechanisms of abiotic stress tolerance that translate to crop yield stability

Michael V. Mickelbart; Paul M. Hasegawa; Julia Bailey-Serres

Crop yield reduction as a consequence of increasingly severe climatic events threatens global food security. Genetic loci that ensure productivity in challenging environments exist within the germplasm of crops, their wild relatives and species that are adapted to extreme environments. Selective breeding for the combination of beneficial loci in germplasm has improved yields in diverse environments throughout the history of agriculture. An effective new paradigm is the targeted identification of specific genetic determinants of stress adaptation that have evolved in nature and their precise introgression into elite varieties. These loci are often associated with distinct regulation or function, duplication and/or neofunctionalization of genes that maintain plant homeostasis.


Plant Molecular Biology Reporter | 1999

An Improved RNA Isolation Method for Plant Tissues Containing High Levels of Phenolic Compounds or Carbohydrates

Ron A. Salzman; Tomomichi Fujita; Keyan Zhu-Salzman; Paul M. Hasegawa; Ray A. Bressan

Difficulties extracting high-quality RNA from recalcitrant plant tissues are often due to high levels of phenolics, carbohydrates, or other compounds that bind and/or co-precipitate with RNA. We describe here a method using soluble polyvinylpyrrolidone (PVP) and ethanol precipitation, which has been successful in several recalcitrant systems where other specialized RNA extraction methods failed to deliver suitable product. Using this method, RNA capable of reverse-transcription/PCR amplification and cDNA library construction was isolated from ripening grape berries, dry seeds of Albizia procera and radish, and leaf tissue of A. procera and Griffonia simplicifolia. This method is applicable to a variety of plant tissues.

Collaboration


Dive into the Paul M. Hasegawa's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

José M. Pardo

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Dae-Jin Yun

Gyeongsang National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge