Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paul McFadden is active.

Publication


Featured researches published by Paul McFadden.


IEEE Transactions on Information Theory | 2004

Sparse-graph codes for quantum error correction

David J. C. MacKay; Graeme Mitchison; Paul McFadden

Sparse-graph codes appropriate for use in quantum error-correction are presented. Quantum error-correcting codes based on sparse graphs are of interest for three reasons. First, the best codes currently known for classical channels are based on sparse graphs. Second, sparse-graph codes keep the number of quantum interactions associated with the quantum error-correction process small: a constant number per quantum bit, independent of the block length. Third, sparse-graph codes often offer great flexibility with respect to block length and rate. We believe some of the codes we present are unsurpassed by previously published quantum error-correcting codes.


Physical Review D | 2007

Generating Ekpyrotic Curvature Perturbations Before the Big Bang

Jean-Luc Lehners; Paul McFadden; Neil Turok; Paul J. Steinhardt

We analyze a general mechanism for producing a nearly scale-invariant spectrum of cosmological curvature perturbations during a contracting phase preceding a big bang, which can be entirely described using 4D effective field theory. The mechanism, based on first producing entropic perturbations and then converting them to curvature perturbations, can be naturally incorporated in cyclic and ekpyrotic models in which the big bang is modeled as a brane collision, as well as other types of cosmological models with a pre-big bang phase. We show that the correct perturbation amplitude can be obtained and that the spectral tilt n{sub s} tends to range from slightly blue to red, with 0.97<n{sub s}<1.02 for the simplest models, a range compatible with current observations but shifted by a few percent towards the blue compared to the prediction of the simplest, large-field inflationary models.


Physical Review D | 2010

Holography for cosmology

Paul McFadden; Kostas Skenderis

We propose a holographic description of four-dimensional single-scalar inflationary universes, and show how cosmological observables, such as the primordial power spectrum, are encoded in the correlation functions of a three-dimensional quantum field theory (QFT). The holographic description correctly reproduces standard inflationary predictions in the regime where a perturbative quantization of fluctuations is justified. In the opposite regime, wherein gravity is strongly coupled at early times, we propose a holographic description in terms of perturbative large N QFT. Initiating a holographic phenomenological approach, we show that models containing only two parameters, N and a dimensionful coupling constant, are capable of satisfying the current observational constraints.


Journal of High Energy Physics | 2011

The holographic fluid dual to vacuum Einstein gravity

Geoffrey Compère; Paul McFadden; Kostas Skenderis; Marika Taylor

We present an algorithm for systematically reconstructing a solution of the (d + 2)-dimensional vacuum Einstein equations from a (d + 1)-dimensional fluid, extending the non-relativistic hydrodynamic expansion of Bredberg et al. in arXiv:1101.2451 to arbitrary order. The fluid satisfies equations of motion which are the incompressible Navier-Stokes equations, corrected by specific higher-derivative terms. The uniqueness and regularity of this solution is established to all orders and explicit results are given for the bulk metric and the stress tensor of the dual fluid through fifth order in the hydrodynamic expansion. We establish the validity of a relativistic hydrodynamic description for the dual fluid, which has the unusual property of having a vanishing equilibrium energy density. The gravitational results are used to identify transport coefficients of the dual fluid, which also obeys an interesting and exact constraint on its stress tensor. We propose novel Lagrangian models which realise key properties of the holographic fluid.


Journal of High Energy Physics | 2013

Holography for inflation using conformal perturbation theory

Adam Bzowski; Paul McFadden; Kostas Skenderis

A bstractWe provide a precise and quantitative holographic description of a class of inflationary slow-roll models. The dual QFT is a deformation of a three-dimensional CFT by a nearly marginal operator, which, in the models we consider, generates an RG flow to a nearby IR fixed point. These models describe hilltop inflation, where the inflaton rolls from a local maximum of the potential in the infinite past (corresponding to the IR fixed point of the dual QFT) to reach a nearby local minimum in the infinite future (corresponding to the UV of the dual QFT). Through purely holographic means, we compute the spectra and bispectra of scalar and tensor cosmological perturbations. The QFT correlators to which these observables map holographically may be calculated using conformal perturbation theory, even when the dual QFT is strongly coupled. Both the spectra and the bispectra may be expressed this way in terms of CFT correlators that are fixed, up to a few constants, by conformal invariance. The form of slow-roll inflationary correlators is thus determined by the perturbative breaking of the de Sitter isometries away from the fixed point. Setting the constants to their values obtained by AdS/CFT at the fixed point, we find exact agreement with known expressions for the slow-roll power spectra and non-Gaussianities.


Journal of High Energy Physics | 2014

Implications of conformal invariance in momentum space

Adam Bzowski; Paul McFadden; Kostas Skenderis

A bstractWe present a comprehensive analysis of the implications of conformal invariance for 3-point functions of the stress-energy tensor, conserved currents and scalar operators in general dimension and in momentum space. Our starting point is a novel and very effective decomposition of tensor correlators which reduces their computation to that of a number of scalar form factors. For example, the most general 3-point function of a conserved and traceless stress-energy tensor is determined by only five form factors. Dilatations and special conformal Ward identities then impose additional conditions on these form factors. The special conformal Ward identities become a set of first and second order differential equations, whose general solution is given in terms of integrals involving a product of three Bessel functions (‘triple-K integrals’). All in all, the correlators are completely determined up to a number of constants, in agreement with well-known position space results. In odd dimensions 3-point functions are finite without renormalisation while in even dimensions non-trivial renormalisation in required. In this paper we restrict ourselves to odd dimensions. A comprehensive analysis of renormalisation will be discussed elsewhere.This paper contains two parts that can be read independently of each other. In the first part, we explain the method that leads to the solution for the correlators in terms of triple-K integrals while the second part contains a self-contained presentation of all results. Readers interested only in results may directly consult the second part of the paper.


arXiv: High Energy Physics - Theory | 2010

The holographic universe

Paul McFadden; Kostas Skenderis

We present a holographic description of four-dimensional single-scalar inflationary universes in terms of a three-dimensional quantum field theory (QFT). The holographic description correctly reproduces standard inflationary predictions in their regime of applicability. In the opposite case, wherein gravity is strongly coupled at early times, we propose a holographic description in terms of perturbative QFT and present models capable of satisfying the current observational constraints while exhibiting a phenomenology distinct from standard inflation. This provides a qualitatively new method for generating a nearly scale-invariant spectrum of primordial cosmological perturbations.


Journal of Cosmology and Astroparticle Physics | 2011

Holographic non-Gaussianity

Paul McFadden; Kostas Skenderis

We investigate the non-Gaussianity of primordial cosmological perturbations within our recently proposed holographic description of inflationary universes. We derive a holographic formula that determines the bispectrum of cosmological curvature perturbations in terms of correlation functions of a holographically dual three-dimensional non-gravitational quantum field theory (QFT). This allows us to compute the primordial bispectrum for a universe which started in a non-geometric holographic phase, using perturbative QFT calculations. Strikingly, for a class of models specified by a three-dimensional super-renormalisable QFT, the primordial bispectrum is of exactly the factorisable equilateral form with f_nl^eq=5/36, irrespective of the details of the dual QFT. A by-product of this investigation is a holographic formula for the three-point function of the trace of the stress-energy tensor along general holographic RG flows, which should have applications outside the remit of this work.


Journal of High Energy Physics | 2012

The relativistic fluid dual to vacuum Einstein gravity

Geoffrey Compère; Paul McFadden; Konstantinos Skenderis; Marika Taylor

A bstractWe present a construction of a (d + 2)-dimensional Ricci-flat metric corresponding to a (d + 1)-dimensional relativistic fluid, representing holographically the hydrodynamic regime of a (putative) dual theory. We show how to obtain the metric to arbitrarily high order using a relativistic gradient expansion, and explicitly carry out the computation to second order. The fluid has zero energy density in equilibrium, which implies incompressibility at first order in gradients, and its stress tensor (both at and away from equilibrium) satisfies a quadratic constraint, which determines its energy density away from equilibrium. The entire dynamics to second order is encoded in one first order and six second order transport coefficients, which we compute. We classify entropy currents with non-negative divergence at second order in relativistic gradients. We then verify that the entropy current obtained by pulling back to the fluid surface the area form at the null horizon indeed has a non-negative divergence. We show that there are distinct near-horizon scaling limits that are equivalent either to the relativistic gradient expansion we discuss here, or to the non-relativistic expansion associated with the Navier-Stokes equations discussed in previous works. The latter expansion may be recovered from the present relativistic expansion upon taking a specific non-relativistic limit.


Journal of Cosmology and Astroparticle Physics | 2011

Cosmological 3-point correlators from holography

Paul McFadden; Kostas Skenderis

We investigate the non-Gaussianity of primordial cosmological perturbations using holographic methods. In particular, we derive holographic formulae that relate all cosmological 3-point correlation functions, including both scalar and tensor perturbations, to stress-energy correlation functions of a holographically dual three-dimensional quantum field theory. These results apply to general single scalar inflationary universes that at late times approach either de Sitter spacetime or accelerating power-law cosmologies. We further show that in Einstein gravity all 3-point functions involving tensors may be obtained from correlators containing only positive helicity gravitons, with the ratios of these to the correlators involving one negative helicity graviton being given by universal functions of momenta, irrespectively of the potential of the scalar field. As a by-product of this investigation, we obtain holographic formulae for the full 3-point function of the stress-energy tensor along general holographic RG flows. These results should have applications in a wider holographic context.

Collaboration


Dive into the Paul McFadden's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adam Bzowski

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Neil Turok

Perimeter Institute for Theoretical Physics

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marika Taylor

University of Southampton

View shared research outputs
Top Co-Authors

Avatar

Geoffrey Compère

Université libre de Bruxelles

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge