Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paul N. Durfee is active.

Publication


Featured researches published by Paul N. Durfee.


Nature Materials | 2011

The targeted delivery of multicomponent cargos to cancer cells by nanoporous particle-supported lipid bilayers

Carlee E. Ashley; Eric C. Carnes; Genevieve K Phillips; David Padilla; Paul N. Durfee; Page A. Brown; Tracey N. Hanna; Juewen Liu; Brandy Phillips; Mark B. Carter; Nick J. Carroll; Xingmao Jiang; Darren R. Dunphy; Cheryl L. Willman; Dimiter N. Petsev; Deborah G. Evans; Atul N. Parikh; Bryce Chackerian; Walker Wharton; David S. Peabody; C. Jeffrey Brinker

Encapsulation of drugs within nanocarriers that selectively target malignant cells promises to mitigate side effects of conventional chemotherapy and to enable delivery of the unique drug combinations needed for personalized medicine. To realize this potential, however, targeted nanocarriers must simultaneously overcome multiple challenges, including specificity, stability, and a high capacity for disparate cargos. Here we report porous nanoparticle-supported lipid bilayers (protocells) that synergistically combine properties of liposomes and nanoporous particles. Protocells modified with a targeting peptide that binds to human hepatocellular carcinoma (HCC) exhibit a 10,000-fold greater affinity for HCC than for hepatocytes, endothelial cells, and immune cells. Furthermore, protocells can be loaded with combinations of therapeutic (drugs, siRNA, and toxins) and diagnostic (quantum dots) agents and modified to promote endosomal escape and nuclear accumulation of selected cargos. The enormous capacity of the high-surface-area nanoporous core combined with the enhanced targeting efficacy enabled by the fluid supported lipid bilayer allow a single protocell loaded with a drug cocktail to kill a drug-resistant HCC cell, representing a 106-fold improvement over comparable liposomes.


ACS Nano | 2011

Cell-Specific Delivery of Diverse Cargos by Bacteriophage MS2 Virus-Like Particles

Carlee E. Ashley; Eric C. Carnes; Genevieve K Phillips; Paul N. Durfee; Buley; Christopher A. Lino; David Padilla; Brandy Phillips; Mark B. Carter; Cheryl L. Willman; Brinker Cj; Caldeira Jdo C; Bryce Chackerian; Walker Wharton; David S. Peabody

Virus-like particles (VLPs) of bacteriophage MS2 possess numerous features that make them well-suited for use in targeted delivery of therapeutic and imaging agents. MS2 VLPs can be rapidly produced in large quantities using in vivo or in vitro synthesis techniques. Their capsids can be modified in precise locations via genetic insertion or chemical conjugation, facilitating the multivalent display of targeting ligands. MS2 VLPs also self-assemble in the presence of nucleic acids to specifically encapsidate siRNA and RNA-modified cargos. Here we report the use of MS2 VLPs to selectively deliver nanoparticles, chemotherapeutic drugs, siRNA cocktails, and protein toxins to human hepatocellular carcinoma (HCC). MS2 VLPs modified with a peptide (SP94) that binds HCC exhibit a 10(4)-fold higher avidity for HCC than for hepatocytes, endothelial cells, monocytes, or lymphocytes and can deliver high concentrations of encapsidated cargo to the cytosol of HCC cells. SP94-targeted VLPs loaded with doxorubicin, cisplatin, and 5-fluorouracil selectively kill the HCC cell line, Hep3B, at drug concentrations <1 nM, while SP94-targeted VLPs that encapsidate a siRNA cocktail, which silences expression of cyclin family members, induce growth arrest and apoptosis of Hep3B at siRNA concentrations <150 pM. Impressively, MS2 VLPs, when loaded with ricin toxin A-chain (RTA) and modified to codisplay the SP94 targeting peptide and a histidine-rich fusogenic peptide (H5WYG) that promotes endosomal escape, kill virtually the entire population of Hep3B cells at an RTA concentration of 100 fM without affecting the viability of control cells. Our results demonstrate that MS2 VLPs, because of their tolerance of multivalent peptide display and their ability to specifically encapsidate a variety of chemically disparate cargos, induce selective cytotoxicity of cancer in vitro and represent a significant improvement in the characteristics of VLP-based delivery systems.


ACS Nano | 2016

Mesoporous Silica Nanoparticle-Supported Lipid Bilayers (Protocells) for Active Targeting and Delivery to Individual Leukemia Cells

Paul N. Durfee; Yu-Shen Lin; Darren R. Dunphy; Ayse Muniz; Kimberly S. Butler; Kevin R. Humphrey; Amanda J. Lokke; Jacob O. Agola; Stanley S. Chou; I-Ming Chen; Walker Wharton; Jason L. Townson; Cheryl L. Willman; C. Jeffrey Brinker

Many nanocarrier cancer therapeutics currently under development, as well as those used in the clinical setting, rely upon the enhanced permeability and retention (EPR) effect to passively accumulate in the tumor microenvironment and kill cancer cells. In leukemia, where leukemogenic stem cells and their progeny circulate within the peripheral blood or bone marrow, the EPR effect may not be operative. Thus, for leukemia therapeutics, it is essential to target and bind individual circulating cells. Here, we investigate mesoporous silica nanoparticle (MSN)-supported lipid bilayers (protocells), an emerging class of nanocarriers, and establish the synthesis conditions and lipid bilayer composition needed to achieve highly monodisperse protocells that remain stable in complex media as assessed in vitro by dynamic light scattering and cryo-electron microscopy and ex ovo by direct imaging within a chick chorioallantoic membrane (CAM) model. We show that for vesicle fusion conditions where the lipid surface area exceeds the external surface area of the MSN and the ionic strength exceeds 20 mM, we form monosized protocells (polydispersity index <0.1) on MSN cores with varying size, shape, and pore size, whose conformal zwitterionic supported lipid bilayer confers excellent stability as judged by circulation in the CAM and minimal opsonization in vivo in a mouse model. Having established protocell formulations that are stable colloids, we further modified them with anti-EGFR antibodies as targeting agents and reverified their monodispersity and stability. Then, using intravital imaging in the CAM, we directly observed in real time the progression of selective targeting of individual leukemia cells (using the established REH leukemia cell line transduced with EGFR) and delivery of a model cargo. Overall, we have established the effectiveness of the protocell platform for individual cell targeting and delivery needed for leukemia and other disseminated disease.


Vaccine | 2009

Induction of mucosal and systemic antibody responses against the HIV coreceptor CCR5 upon intramuscular immunization and aerosol delivery of a virus-like particle based vaccine.

Zoe Hunter; Hugh D. C. Smyth; Paul N. Durfee; Bryce Chackerian

Virus-like particles (VLPs) can be exploited as platforms to increase the immunogenicity of poorly immunogenic antigens, including self-proteins. We have developed VLP-based vaccines that target two domains of the HIV coreceptor CCR5 that are involved in HIV binding. These vaccines induce anti-CCR5 antibodies that bind to native CCR5 and inhibit SIV infection in vitro. Given the role of mucosal surfaces in HIV transmission and replication, we also asked whether an aerosolized, VLP-based pulmonary vaccine targeting CCR5 could induce a robust mucosal response in addition to a systemic response. In rats, both intramuscular and pulmonary immunization induced high-titer IgG and IgA against the vaccine in the serum, but only aerosol vaccination induced IgA antibodies at local mucosal sites. An intramuscular prime followed by an aerosol boost resulted in strong serum and mucosal antibody responses. These results show that VLP-based vaccines targeting CCR5 induce high-titer systemic antibodies, and can elicit both local and systemic mucosal response when administered via an aerosol. Vaccination against a self-molecule that is critically involved during HIV transmission and pathogenesis is an alternative to targeting the virus itself. More generally, our results provide a general method for inducing broad systemic and mucosal antibody responses using VLP-based immunogens.


Journal of Neuroscience Methods | 2016

A novel approach for targeted delivery to motoneurons using cholera toxin-B modified protocells.

Maria A. Gonzalez Porras; Paul N. Durfee; Ashley M. Gregory; Gary C. Sieck; C. Jeffrey Brinker; Carlos B. Mantilla

BACKGROUND Trophic interactions between muscle fibers and motoneurons at the neuromuscular junction (NMJ) play a critical role in determining motor function throughout development, ageing, injury, or disease. Treatment of neuromuscular disorders is hindered by the inability to selectively target motoneurons with pharmacological and genetic interventions. NEW METHOD We describe a novel delivery system to motoneurons using mesoporous silica nanoparticles encapsulated within a lipid bilayer (protocells) and modified with the atoxic subunit B of the cholera toxin (CTB) that binds to gangliosides present on neuronal membranes. RESULTS CTB modified protocells showed significantly greater motoneuron uptake compared to unmodified protocells after 24h of treatment (60% vs. 15%, respectively). CTB-protocells showed specific uptake by motoneurons compared to muscle cells and demonstrated cargo release of a surrogate drug. Protocells showed a lack of cytotoxicity and unimpaired cellular proliferation. In isolated diaphragm muscle-phrenic nerve preparations, preferential axon terminal uptake of CTB-modified protocells was observed compared to uptake in surrounding muscle tissue. A larger proportion of axon terminals displayed uptake following treatment with CTB-protocells compared to unmodified protocells (40% vs. 6%, respectively). COMPARISON WITH EXISTING METHOD(S) Current motoneuron targeting strategies lack the functionality to load and deliver multiple cargos. CTB-protocells capitalizes on the advantages of liposomes and mesoporous silica nanoparticles allowing a large loading capacity and cargo release. The ability of CTB-protocells to target motoneurons at the NMJ confers a great advantage over existing methods. CONCLUSIONS CTB-protocells constitute a viable targeted motoneuron delivery system for drugs and genes facilitating various therapies for neuromuscular diseases.


The Prostate | 2017

Immunoaffinity based methods are superior to kits for purification of prostate derived extracellular vesicles from plasma samples

Sabine I. Brett; Fabrice Lucien; Charles Guo; Karla Williams; Yohan Kim; Paul N. Durfee; C. J. Brinker; Joseph I. Chin; Jun Yang; Hon S. Leong

The ability to isolate extracellular vesicles (EVs) such as exosomes or microparticles is an important method that is currently not standardized. While commercially available kits offer purification of EVs from biofluids, such purified EV samples will also contain non‐EV entities such as soluble protein and nucleic acids that could confound subsequent experimentation. Ideally, only EVs would be isolated and no soluble protein would be present in the final EV preparation.


Scientific Reports | 2018

Understanding the Connection between Nanoparticle Uptake and Cancer Treatment Efficacy using Mathematical Modeling

Terisse Brocato; Eric N. Coker; Paul N. Durfee; Yu Shen Lin; Jason L. Townson; Edward F. Wyckoff; Vittorio Cristini; C. Jeffrey Brinker; Zhihui Wang

Nanoparticles have shown great promise in improving cancer treatment efficacy while reducing toxicity and treatment side effects. Predicting the treatment outcome for nanoparticle systems by measuring nanoparticle biodistribution has been challenging due to the commonly unmatched, heterogeneous distribution of nanoparticles relative to free drug distribution. We here present a proof-of-concept study that uses mathematical modeling together with experimentation to address this challenge. Individual mice with 4T1 breast cancer were treated with either nanoparticle-delivered or free doxorubicin, with results demonstrating improved cancer kill efficacy of doxorubicin loaded nanoparticles in comparison to free doxorubicin. We then developed a mathematical theory to render model predictions from measured nanoparticle biodistribution, as determined using graphite furnace atomic absorption. Model analysis finds that treatment efficacy increased exponentially with increased nanoparticle accumulation within the tumor, emphasizing the significance of developing new ways to optimize the delivery efficiency of nanoparticles to the tumor microenvironment.


Nature Communications | 2018

Establishing the effects of mesoporous silica nanoparticle properties on in vivo disposition using imaging-based pharmacokinetics

Prashant Dogra; Natalie L. Adolphi; Zhihui Wang; Yu-Shen Lin; Kimberly S. Butler; Paul N. Durfee; Jonas G. Croissant; Achraf Noureddine; Eric N. Coker; Elaine L. Bearer; Vittorio Cristini; C. Jeffrey Brinker

The progress of nanoparticle (NP)-based drug delivery has been hindered by an inability to establish structure-activity relationships in vivo. Here, using stable, monosized, radiolabeled, mesoporous silica nanoparticles (MSNs), we apply an integrated SPECT/CT imaging and mathematical modeling approach to understand the combined effects of MSN size, surface chemistry and routes of administration on biodistribution and clearance kinetics in healthy rats. We show that increased particle size from ~32- to ~142-nm results in a monotonic decrease in systemic bioavailability, irrespective of route of administration, with corresponding accumulation in liver and spleen. Cationic MSNs with surface exposed amines (PEI) have reduced circulation, compared to MSNs of identical size and charge but with shielded amines (QA), due to rapid sequestration into liver and spleen. However, QA show greater total excretion than PEI and their size-matched neutral counterparts (TMS). Overall, we provide important predictive functional correlations to support the rational design of nanomedicines.Nanoparticle applications are limited by insufficient understanding of physiochemical properties on in vivo disposition. Here, the authors explore the influence of size, surface chemistry and administration on the biodisposition of mesoporous silica nanoparticles using image-based pharmacokinetics.


Nanomedicine: Nanotechnology, Biology and Medicine | 2018

Uptake and intracellular fate of cholera toxin subunit b-modified mesoporous silica nanoparticle-supported lipid bilayers (aka protocells) in motoneurons

Maria A. Gonzalez Porras; Paul N. Durfee; Sebastian Giambini; Gary C. Sieck; C. Jeffrey Brinker; Carlos B. Mantilla

Cholera toxin B (CTB) modified mesoporous silica nanoparticle supported lipid bilayers (CTB-protocells) are a promising, customizable approach for targeting therapeutic cargo to motoneurons. In the present study, the endocytic mechanism and intracellular fate of CTB-protocells in motoneurons were examined to provide information for the development of therapeutic application and cargo delivery. Pharmacological inhibitors elucidated CTB-protocells endocytosis to be dependent on the integrity of lipid rafts and macropinocytosis. Using immunofluorescence techniques, live confocal and transmission electron microscopy, CTB-protocells were primarily found in the cytosol, membrane lipid domains and Golgi. There was no difference in the amount of motoneuron activity dependent uptake of CTB-protocells in neuromuscular junctions, consistent with clathrin activation at the axon terminals during low frequency activity. In conclusion, CTB-protocells uptake is mediated principally by lipid rafts and macropinocytosis. Once internalized, CTB-protocells escape lysosomal degradation, and engage biological pathways that are not readily accessible by untargeted delivery methods.


Journal of Sol-Gel Science and Technology | 2018

Engineering of large-pore lipid-coated mesoporous silica nanoparticles for dual cargo delivery to cancer cells

Achraf Noureddine; Elizabeth A. Hjelvik; Jonas G. Croissant; Paul N. Durfee; Jacob O. Agola; C. Jeffrey Brinker

AbstractLipid-coated mesoporous silica nanoparticles (LC-MSNs) have recently emerged as a next-generation cargo delivery nanosystem combining the unique attributes of both the organic and inorganic components. The high surface area biodegradable inorganic mesoporous silica core can accommodate multiple classes of bio-relevant cargos in large amounts, while the supported lipid bilayer coating retains the cargo and increases the stability of the nanocarrier in bio-relevant media which should promote greater bio-accumulation of LC-MSNs in cancer sites. In this contribution, we report on the optimization of various sol–gel synthesis (pH, stirring speed) and post-synthesis (hydrothermal treatment) procedures to enlarge the MSN pore size and tune the surface chemistry so as to enable loading and delivery of large biomolecules. The proof of concept of the dual cargo-loaded nanocarrier has been demonstrated in immortalized cervical cancer HeLa cells using MSNs of various fine-tuned pore sizes. HighlightsLipid-coated mesoporous silica nanoparticles were prepared for dual cargo delivery to cancer cells.The pore and particle sizes, surface areas, and condensation degrees were tuned by sol–gel processes.Sol–gel (pH, stirring speed) and post-synthesis (hydrothermal treatment) parameters were optimized.

Collaboration


Dive into the Paul N. Durfee's collaboration.

Top Co-Authors

Avatar

C. Jeffrey Brinker

Vienna University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yu-Shen Lin

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar

Carlee E. Ashley

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eric C. Carnes

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar

Jacob O. Agola

University of New Mexico

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Walker Wharton

University of New Mexico

View shared research outputs
Researchain Logo
Decentralizing Knowledge